(本小題滿分14分)過點(diǎn)(1,0)直線交拋物線
于A(x1,y1),B(x2,y2)兩點(diǎn),拋物線的頂點(diǎn)是
.
(ⅰ)證明:為定值;
(ⅱ)若AB中點(diǎn)橫坐標(biāo)為2,求AB的長度及的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點(diǎn)A,B.
(Ⅰ)求實(shí)數(shù)k的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點(diǎn)F?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn)
,且離心率e=
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)
、
,且線段
的垂直平分線過定點(diǎn)
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分) 已知?jiǎng)訄A過定點(diǎn)
,且與直線
相切,橢圓
的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是
,點(diǎn)
在橢圓
上.
(Ⅰ)求動(dòng)圓圓心的軌跡
的方程及其橢圓
的方程;
(Ⅱ)若動(dòng)直線與軌跡
在
處的切線平行,且直線
與橢圓
交于
兩點(diǎn),問:是否存在著這樣的直線
使得
的面積等于
?如果存在,請(qǐng)求出直線
的方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn)
,又知直線
與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實(shí)數(shù)k值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓C:以雙曲線
的焦點(diǎn)為頂點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點(diǎn)分別為點(diǎn)A,B,點(diǎn)M是橢圓C上異于A,B的任意一點(diǎn).
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點(diǎn)P,Q,求線段PQ長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知半徑為6的圓與
軸相切,圓心
在直線
上且在第二象限,直線
過點(diǎn)
.
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓
相交于
兩點(diǎn)且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓上的任意一點(diǎn)到它的兩個(gè)焦點(diǎn)
,
的距離之和為
,且其焦距為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓
交于不同的兩點(diǎn)A,B.問是否存在以A,B為直徑
的圓 過橢圓的右焦點(diǎn).若存在,求出
的值;不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(12分)經(jīng)過點(diǎn)作直線
交雙曲線
于
、
兩點(diǎn),且
為
中點(diǎn).
(1)求直線的方程 ;(2)求線段
的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com