日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (12分)已知橢圓C:以雙曲線的焦點(diǎn)為頂點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
          (1)求橢圓C的方程;
          (2)若橢圓C的左、右頂點(diǎn)分別為點(diǎn)A,B,點(diǎn)M是橢圓C上異于A,B的任意一點(diǎn).
          ①求證:直線MA,MB的斜率之積為定值;
          ②若直線MA,MB與直線x=4分別交于點(diǎn)P,Q,求線段PQ長(zhǎng)度的最小值.

          (1)(2)①證明見解析②

          解析試題分析:(1)易知雙曲線的焦點(diǎn)為(-2,0),(2,0),離心率為,……2分
          則在橢圓C中a=2,e=,
          故在橢圓C中c=,b=1,所以橢圓C的方程為               ……4分
          (2)①設(shè)M(x0,y0)(x0≠±2),由題易知A(-2,0),B(2,0),
          則kMA,kMB,故kMA·kMB,        ……6分
          點(diǎn)M在橢圓C上,則,即,
          故kMA·kMB,即直線MA,MB的斜率之積為定值。                      ……8分
          ②解法一:設(shè)P(4,y1),Q(4,y2),則kMA=kPA,kMB=kBQ,……9分
          由①得,即y1y2=-3,當(dāng)y1>0,y2<0時(shí),|PQ|=|y1-y2|≥2 ,當(dāng)且僅當(dāng)y1,y2=-時(shí)等號(hào)成立.……11分
          同理,當(dāng)y1<0,y2>0時(shí),當(dāng)且僅當(dāng),y2時(shí),|PQ|有最小值. ……12分
          解法二:設(shè)直線MA的斜率為k,則直線MA的方程為y=k(x+2),從而P(4,6k) ……9分
          由①知直線MB的斜率為,則直線MB的方程為y=(x-2),
          故得,故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
          即|PQ|有最小值.                                                  ……12分
          考點(diǎn):本小題主要考查橢圓與雙曲線中基本量的關(guān)系、橢圓標(biāo)準(zhǔn)方程的求解和直線與橢圓的位置關(guān)系、兩點(diǎn)間的位置關(guān)系和利用基本不等式求最值,考查學(xué)生分析問題、轉(zhuǎn)化問題的能力和運(yùn)算求解能力.
          點(diǎn)評(píng):直線與圓錐曲線位置關(guān)系的題目是每年高考必考的題目,且一般都以壓軸題的形式出現(xiàn),所以難度較大,關(guān)鍵是運(yùn)算量比較大,要盡量應(yīng)用數(shù)形結(jié)合簡(jiǎn)化運(yùn)算,還要細(xì)心求解.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          .已知雙曲線的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,一條漸近線方程為,右焦點(diǎn),雙曲線的實(shí)軸為,為雙曲線上一點(diǎn)(不同于),直線,分別與直線交于兩點(diǎn)
          (1)求雙曲線的方程;
          (2)是否為定值,若為定值,求出該值;若不為定值,說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本題滿分14分)
          已知橢圓過點(diǎn),且離心率為.
          (1)求橢圓的方程;
          (2)為橢圓的左右頂點(diǎn),點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線分別交直線兩點(diǎn).  
          證明:以線段為直徑的圓恒過軸上的定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)分別是橢圓的左,右焦點(diǎn)。
          (1)若是第一象限內(nèi)該橢圓上的一點(diǎn),且·=求點(diǎn)的坐標(biāo)。
          (2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中O為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分14分)過點(diǎn)(1,0)直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),拋物線的頂點(diǎn)是
          (ⅰ)證明:為定值;
          (ⅱ)若AB中點(diǎn)橫坐標(biāo)為2,求AB的長(zhǎng)度及的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本題滿分12分)設(shè)橢圓C1的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖.若拋物線C2軸的交點(diǎn)為B,且經(jīng)過F1,F(xiàn)2點(diǎn).

          (Ⅰ)求橢圓C1的方程;
          (Ⅱ)設(shè)M(0,),N為拋物線C2上的一動(dòng)點(diǎn),過點(diǎn)N作拋物線C2的切線交橢圓C1于P、Q兩點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本題滿分12分)雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn)(,4),求其方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn)。
          (Ⅰ)寫出的方程;     (Ⅱ)若,求的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (12分)已知橢圓.過點(diǎn)作圓的切線交橢圓
          ,兩點(diǎn).
          (1)求橢圓的焦點(diǎn)坐標(biāo)和離心率;
          (2)將表示為的函數(shù),并求的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案