日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)在點(diǎn)處的切線方程為.

          1)求、

          2)設(shè)曲線軸負(fù)半軸的交點(diǎn)為點(diǎn),曲線在點(diǎn)處的切線方程為,求證:對(duì)于任意的實(shí)數(shù),都有;

          3)若關(guān)于的方程有兩個(gè)實(shí)數(shù)根,且,證明:.

          【答案】1;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.

          【解析】

          1)將點(diǎn)代入切線方程得出,并求出函數(shù)的導(dǎo)數(shù),由求出的值;

          2)求出點(diǎn)的坐標(biāo),并利用導(dǎo)數(shù)求出函數(shù)在點(diǎn)處切線對(duì)應(yīng)的函數(shù),然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出;

          3)求出方程的根,利用函數(shù)的單調(diào)性證明出,設(shè)函數(shù)在原點(diǎn)處的切線對(duì)應(yīng)的函數(shù)為,易得的根為,由函數(shù)的單調(diào)性得出,再利用不等式的性質(zhì)可證明結(jié)論成立.

          1)將代入切線方程中,有,

          所以,即,

          ,所以

          ,則,與矛盾,故;

          2)由(1)可知,令,有

          故曲線軸負(fù)半軸的唯一交點(diǎn).

          曲線在點(diǎn)處的切線方程為,則

          ,則

          所以,.

          當(dāng)時(shí),若,,

          ,上單調(diào)遞增,,故,上單調(diào)遞減,

          當(dāng)時(shí),由時(shí)單調(diào)遞增,,函數(shù)上單調(diào)遞增.

          所以,即成立;

          3,設(shè)的根為,則

          單調(diào)遞減,且,所以

          設(shè)曲線在點(diǎn)處的切線方程為,有,

          ,

          當(dāng)時(shí),,

          當(dāng)時(shí),,

          故函數(shù)上單調(diào)遞增,又,

          所以當(dāng)時(shí),,當(dāng)時(shí),,

          所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          所以,即,

          設(shè)的根為,則,

          又函數(shù)單調(diào)遞增,故,故.

          ,所以.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且此拋物線的準(zhǔn)線被橢圓截得的弦長(zhǎng)為.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)直線交橢圓、兩點(diǎn),線段的中點(diǎn)為,直線是線段的垂直平分線,試問(wèn)直線是否過(guò)定點(diǎn)?若是,請(qǐng)求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的600個(gè)零件進(jìn)行抽樣測(cè)試,先將600個(gè)零件進(jìn)行編號(hào),編號(hào)分別為001,002,,599600從中抽取60個(gè)樣本,如下提供隨機(jī)數(shù)表的第4行到第6行:

          32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

          84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

          32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

          若從表中第6行第6列開(kāi)始向右依次讀取3個(gè)數(shù)據(jù),則得到的第6個(gè)樣本編號(hào)  

          A. 522B. 324C. 535D. 578

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一商場(chǎng)對(duì)每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計(jì)對(duì)比,得到如下表格:

          人數(shù)

          10

          15

          20

          25

          30

          35

          40

          件數(shù)

          4

          7

          12

          15

          20

          23

          27

          1)在答題卡給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖,并由散點(diǎn)圖判斷銷售件數(shù)與進(jìn)店人數(shù)是否線性相關(guān)?(給出判斷即可,不必說(shuō)明理由);

          2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)進(jìn)店人數(shù)為80時(shí),商品銷售的件數(shù)(結(jié)果保留整數(shù)).

          (參考數(shù)據(jù):,,,,

          參考公式:,其中為數(shù)據(jù)的平均數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】大學(xué)先修課程,是在高中開(kāi)設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中成功開(kāi)設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程.

          (Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e(cuò)的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?

          優(yōu)等生

          非優(yōu)等生

          總計(jì)

          學(xué)習(xí)大學(xué)先修課程

          250

          沒(méi)有學(xué)習(xí)大學(xué)先修課程

          總計(jì)

          150

          (Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進(jìn)行測(cè)試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          參考公式:,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖放置的邊長(zhǎng)為1的正方形沿軸滾動(dòng),點(diǎn)恰好經(jīng)過(guò)原點(diǎn).設(shè)頂點(diǎn)的軌跡方程是,則對(duì)函數(shù)有下列判斷①函數(shù)是偶函數(shù);②對(duì)任意的都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號(hào)是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量表得如下頻數(shù)分布表:

          質(zhì)量指標(biāo)值分組

          [75,85)

          [85,95)

          [95,105)

          [105,115)

          [115,125)

          頻數(shù)

          6

          26

          38

          22

          8

          I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

          II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

          III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知棱長(zhǎng)為1的正方體,點(diǎn)是四邊形內(nèi)(含邊界)任意一點(diǎn), 中點(diǎn),有下列四個(gè)結(jié)論:

          ;②當(dāng)點(diǎn)為中點(diǎn)時(shí),二面角的余弦值;③所成角的正切值為;④當(dāng)時(shí),點(diǎn)的軌跡長(zhǎng)為.

          其中所有正確的結(jié)論序號(hào)是(

          A.①②③B.①③④C.②③④D.①②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某調(diào)研機(jī)構(gòu),對(duì)本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對(duì)應(yīng)的頻率分布直方圖如圖.

          1)根據(jù)頻率分布直方圖,估計(jì)這名“低碳族”年齡的平均值,中位數(shù);

          2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個(gè)年齡段應(yīng)各抽取多少人?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案