【題目】如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,點(diǎn)M為PB中點(diǎn),底面ABCD為梯形,AB∥CD,AD⊥CD,AD=CD=PC=AB.
(1)證明:CM∥平面PAD;
(2)若四棱錐P-ABCD的體積為4,求點(diǎn)M到平面PAD的距離.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)利用線面平行判定定理,結(jié)合中位線定理,即可證明;
(2)設(shè),則
,由四棱錐
的體積得出
,由
平面
知,點(diǎn)
到平面
的距離等于點(diǎn)
到平面
的距離,過(guò)點(diǎn)
作
,垂足于點(diǎn)
,利用線面垂直的判定定理以及性質(zhì)得出
平面
,從而得出點(diǎn)M到平面PAD的距離.
(1)取中點(diǎn)為
,連接
為
中點(diǎn),
且
又,且
且
四邊形
為平行四邊形,
平面
平面
平面
(2)設(shè),則
由四邊形是直角梯形,
平面
得四棱錐的體積為
由平面
知,點(diǎn)
到平面
的距離等于點(diǎn)
到平面
的距離
過(guò)點(diǎn)作
,垂足于點(diǎn)
平面
,
平面
,
平面
平面
平面
,
平面
平面
由知,
到平面
的距離等于
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
求函數(shù)
的單調(diào)區(qū)間;
當(dāng)
時(shí),若
在區(qū)間
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求經(jīng)過(guò)橢圓右焦點(diǎn)
且與直線
垂直的直線的極坐標(biāo)方程;
(2)若為橢圓
上任意-點(diǎn),當(dāng)點(diǎn)
到直線
距離最小時(shí),求點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點(diǎn),底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=3.
(Ⅰ)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成角的正弦值;
(Ⅲ)求二面角D﹣PE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,點(diǎn)
在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)在圓
上,且
在第一象限,過(guò)
作
的切線交橢圓于
兩點(diǎn),問(wèn):
的周長(zhǎng)是否為定值?若是,求出定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司有兩種發(fā)放薪水的方案:
方案一:底薪1800元,設(shè)每月送快遞單,提成(單位:元)為
方案二:底薪2000元,設(shè)每月送快遞單,提成(單位:元)為
以下該公司某職工小甲在2019年9月份(30天)送快遞的數(shù)據(jù),
日送快遞單數(shù) | 11 | 13 | 14 | 15 | 16 | 18 |
天數(shù) | 4 | 5 | 12 | 3 | 5 | 1 |
(1)從小甲日送快遞單數(shù)大于15的六天中抽取兩天,求這兩天他送的快遞單數(shù)恰好都為16單的概率.
(2)請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為小甲9月份選擇合適的發(fā)放薪水的方案,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè),求證:
;
(Ⅲ)若對(duì)于
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)站每天上午發(fā)出兩班客車(chē),每班客車(chē)發(fā)車(chē)時(shí)刻和發(fā)車(chē)概率如下:第一班車(chē):在8:00,8:20,8:40發(fā)車(chē)的概率分別為,
,
;第二班車(chē):在9:00,9:20,9:40發(fā)車(chē)的概率分別為
,
,
.兩班車(chē)發(fā)車(chē)時(shí)刻是相互獨(dú)立的,一位旅客8:10到達(dá)車(chē)站乘車(chē).求:
(1)該旅客乘第一班車(chē)的概率;
(2)該旅客候車(chē)時(shí)間(單位:分鐘)的分布列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com