日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A的長度均大于200米,現(xiàn)在邊界APAQ處建圍墻,在PQ處圍竹籬笆.

          1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?

          2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價均為每平方米100.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最。

          【答案】1)當米時,三角形地塊APQ的面積最大為平方米;

          2)當米時,可使竹籬笆用料最。

          【解析】試題(1)易得的面積.當且僅當時,取.即當米;(2)由題意得,要使竹籬笆用料最省,只需其長度最短,又 ,當,有最小值,從而求得正解.

          試題解析:設米,米.

          1)則的面積

          當且僅當,時,取.即當,米時, 可使三角形地塊的面積最大.

          2)由題意得,即,要使竹籬笆用料最省,只需其長度最短,所以

          ,當,有最小值,此時,米時, 可使籬笆最。

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,的展開式的各二項式系數(shù)的和等于128

          1)求的值;

          2)求的展開式中的有理項;

          3)求的展開式中系數(shù)最大的項和系數(shù)最小的項.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點.

          (1)求證:MN//平面ACC1A1

          (2)求點N到平面MBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】,設其定義域上的區(qū)間.

          1)判斷該函數(shù)的奇偶性,并證明;

          2)當時,判斷函數(shù)在區(qū)間)上的單調性,并證明;

          3)當時,若存在區(qū)間),使函數(shù)在該區(qū)間上的值域為,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某海輪以每小時30海里的速度航行,在點測得海面上油井在南偏東,海輪向北航行40分鐘后到達點,測得油井在南偏東,海輪改為北偏東的航向再行駛80分鐘到達點,則兩點的距離為(單位:海里)

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知曲線

          (1)求曲線在點處的切線方程;(2)過點作直線與曲線交于兩點,求線段的中點的軌跡方程。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在三棱錐P-ABC中,底面ABC.D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,,.

          1)求證:平面BDE;

          2)求二面角C-EM-N的正弦值.

          3)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設橢圓為左、右焦點,為短軸端點,且,離心率為,為坐標原點.

          (1)求橢圓的方程,

          (2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點,,且滿足?若存在,求出該圓的方程,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】4名書法比賽一等獎的同學和2名繪畫比賽一等獎的同學中選出2名志愿者,參加某項服務工作.

          (1)求選出的兩名志愿者都是獲得書法比賽一等獎的同學的概率;

          (2)求選出的兩名志愿者中一名是獲得書法比賽一等獎,另一名是獲得繪畫比賽一等獎的同學的概率.

          查看答案和解析>>

          同步練習冊答案