日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】一兒童游樂(lè)場(chǎng)擬建造一個(gè)“蛋筒”型游樂(lè)設(shè)施,其軸截面如圖中實(shí)線所示. 是等腰梯形, 米, 的延長(zhǎng)線上, 為銳角). 圓都相切,且其半徑長(zhǎng)為米. 是垂直于的一個(gè)立柱,則當(dāng)的值設(shè)計(jì)為多少時(shí),立柱最矮?

          【答案】當(dāng)時(shí),立柱最矮.

          【解析】試題分析:利用題意建立直角坐標(biāo)系,得到關(guān)于的函數(shù): ,求導(dǎo)之后討論函數(shù)的單調(diào)性可知時(shí)取得最值.

          試題解析:

          解:方法一:如圖所示,以所在直線為軸,以線段

          的垂直平分線為軸,建立平面直角坐標(biāo)系.

          因?yàn)?/span> ,所以直線的方程為

          ,

          .

          設(shè)圓心,由圓與直線相切,

          ,

          所以.

          ,則, 設(shè), . 列表如下:

          0

          極小值

          所以當(dāng),即時(shí), 取最小值. 答:當(dāng)時(shí),立柱最矮.

          方法二:如圖所示,延長(zhǎng)交于點(diǎn),過(guò)點(diǎn)

          , .

          中, . 在中, .

          所以.

          (以下同方法一)

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)若討論的單調(diào)性;

          (Ⅱ)若過(guò)點(diǎn)可作函數(shù)圖象的兩條不同切線,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于函數(shù)f(x)=sin(2x+ ),下列命題: ①函數(shù)圖象關(guān)于直線x=﹣ 對(duì)稱;
          ②函數(shù)圖象關(guān)于點(diǎn)( ,0)對(duì)稱;
          ③函數(shù)圖象可看作是把y=sin2x的圖象向左平移個(gè) 單位而得到;
          ④函數(shù)圖象可看作是把y=sin(x+ )的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變)而得到;其中正確的命題是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

          (I)求的解析式及單調(diào)遞減區(qū)間;

          (II)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校高三年級(jí)共有學(xué)生195人,其中女生105人,男生90人.現(xiàn)采用按性別分層抽樣的方法,從中抽取13人進(jìn)行問(wèn)卷調(diào)查.設(shè)其中某項(xiàng)問(wèn)題的選擇分別為“同意”、“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調(diào)查人答卷情況的部分信息.

          同意

          不同意

          合計(jì)

          女學(xué)生

          4

          男學(xué)生

          2

          (Ⅰ)完成上述統(tǒng)計(jì)表;

          (Ⅱ)根據(jù)上表的數(shù)據(jù)估計(jì)高三年級(jí)學(xué)生該項(xiàng)問(wèn)題選擇“同意”的人數(shù);

          (Ⅲ) 從被抽取的女生中隨機(jī)選取2人進(jìn)行訪談,求選取的2名女生中至少有一人選擇“同意”的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù).

          (1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;

          (2)若對(duì)任意的實(shí)數(shù),函數(shù)為實(shí)常數(shù))的圖象與函數(shù)的圖象總相切于一個(gè)定點(diǎn).

          ① 求的值;

          ② 對(duì)上的任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的多面體中, 為直角梯形, , ,四邊形為等腰梯形, ,已知, . 

          (Ⅰ)求證:平面平面;

          (Ⅱ)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知,在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù));在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程是.

          (Ⅰ)求證: ;

          (Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為, 為直線, 的交點(diǎn),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平行四邊形中, ,分別過(guò)點(diǎn)作直線, 垂直平面,且, .

          (Ⅰ)求證: 平面

          (Ⅱ)求二面角的平面角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案