日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知

          (1)當(dāng)m=1時(shí),求A∪B;

          (2)若,求實(shí)數(shù)m的取值范圍.

          答案:
          解析:

            解:(1),  2分

            (2)  1分

            當(dāng)時(shí),即滿足  1分

            當(dāng)時(shí)使  2分

            解得:  1分

            綜上所述,的取值范圍是  1分


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:黑龍江省龍東地區(qū)2011-2012學(xué)年度高二上學(xué)期高中教學(xué)聯(lián)合體期末數(shù)學(xué)文科試卷 題型:044

          設(shè)函數(shù)f(x)=x3+x2+(m2-1)x,(x∈R,)其中m>0

          (1)當(dāng)m=1時(shí),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程

          (2)求函數(shù)的單調(diào)區(qū)間與極值;

          (3)已知函數(shù)f(x)有三個(gè)互不相同的零點(diǎn)0,x1,x2,且x1<x2.若對(duì)任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 函數(shù)與數(shù)列(1) 題型:044

          設(shè)函數(shù)

          (1)當(dāng)m=1時(shí),曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率

          (2)求函數(shù)的單調(diào)區(qū)間與極值;

          (3)已知函數(shù)f(x)有三個(gè)互不相同的零點(diǎn)0,x1,x2,且x1<x2.若對(duì)任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=-x3x2+(m2-1)x(x∈R),其中m>0.

          (1)當(dāng)m=1時(shí),求曲線yf(x)在(1,f(1))點(diǎn)處的切線的方程;

          (2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;

          (3)已知函數(shù)g(x)=f(x)+有三個(gè)互不相同的零點(diǎn),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省泉州市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知,設(shè)是方程的兩個(gè)根,不等式對(duì)任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

          【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.

          要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          可得到要使“P∧Q”為真命題,只需P真Q真即可。

          解:由題設(shè)x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當(dāng)a∈[1,2]時(shí),的最小值為3.

          要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          綜上,要使“P∧Q”為真命題,只需P真Q真,即

          解得實(shí)數(shù)m的取值范圍是(4,8]

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案