日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=-x3x2+(m2-1)x(x∈R),其中m>0.

          (1)當(dāng)m=1時(shí),求曲線yf(x)在(1,f(1))點(diǎn)處的切線的方程;

          (2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;

          (3)已知函數(shù)g(x)=f(x)+有三個(gè)互不相同的零點(diǎn),求m的取值范圍.

          解析 (1)當(dāng)m=1時(shí),f(x)=-x3x2,f′(x)=-x2+2x,故f′(1)=1.

          所以曲線yf(x)在點(diǎn)(1,f(1))處的切線斜率為1.

          切線方程為3x-3y-1=0.

          (2)f′(x)=-x2+2xm2-1,令f′(x)=0,得到x=1-mx=1+m.

          因?yàn)?i>m>0,所以1+m>1-m.

          當(dāng)x變化時(shí),f(x),f′(x)的變化情況如下表:

          x

          (-∞,1-m)

          1-m

          (1-m,1+m)

          1+m

          (1+m,+∞)

          f′(x)

          0

          0

          f(x)

          極小值

          極大值

          f′(x)在(-∞,1-m)和(1+m,+∞)內(nèi)減函數(shù),在(1-m,1+m)內(nèi)增函數(shù).

          函數(shù)f(x)在x=1+m處取得極大值f(1+m),且f(1+m)=m3m2.

          函數(shù)f(x)在x=1-m處取得極小值f(1-m),

          f(1-m)=-m3m2.

          (3)由(2)知,

          函數(shù)g(x)在x=1+m處取得極大值g(1+m)=f(1+m)+,

          g(1+m)=m3m2.

          函數(shù)g(x)在x=1-m處取得極小值g(1-m)=f(1-m)+

          g(1-m)=-m3m2.

          根據(jù)三次函數(shù)的圖像與性質(zhì),函數(shù)g(x)=f(x)+有三個(gè)互不相同的零點(diǎn),只需要

          所以m的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:四川省成都外國(guó)語(yǔ)學(xué)校2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:044

          設(shè)函數(shù)f(x)=loga(x-3a)(a>0且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)的圖象上的點(diǎn)時(shí),點(diǎn)Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點(diǎn).

          ①寫(xiě)出函數(shù)y=g(x)的解析式;

          ②若x∈[a+2,a+3]時(shí),恒有|f(x)-g(x)|≤1,試確定a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)試卷(13) 題型:013

          (理)設(shè)函數(shù)f(x)=sin(ωx+)-1(ω>0)的導(dǎo)數(shù)(x)最大值為3,則f(x)的圖像的一條對(duì)稱軸的方程是

          [  ]

          A.x=

          B.x=

          C.x=

          D.x=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:陜西省西安市第一中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:022

          設(shè)函數(shù)f(x)=(x>0),觀察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,……根據(jù)以上事實(shí),由歸納推理可得:當(dāng)n∈N+且n≥2時(shí),fn(x)=f(fn-1(x))=________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:天利38套《2008全國(guó)各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)文 大綱版 題型:044

          已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導(dǎo)函數(shù)為,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).

          (Ⅰ)當(dāng)a<2時(shí),求F(x)的極小值;

          (Ⅱ)若對(duì)任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:寧夏省銀川一中2010屆高三年級(jí)第一次月考測(cè)試數(shù)學(xué)試卷(理) 題型:044

          設(shè)函數(shù)f(x)=ax+(a,b為常數(shù)),且方程f(x)=有兩個(gè)實(shí)根為x1=-1,x2=2.

          (1)求y=f(x)的解析式;

          (2)證明:曲線y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案