日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)= 在x=1處取得極值.
          (1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
          (2)當(dāng)x∈[1,+∞)時,f(x)≥ 恒成立,求實數(shù)m的取值范圍;
          (3)當(dāng)n∈N* , n≥2時,求證:nf(n)<2+ + +…+

          【答案】
          (1)解:由題意得

          所以f'(1)=1﹣a=0即a=1,∴ ,

          令f'(x)>0,可得0<x<1,令f'(x)<0,可得x>1,

          所以f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.


          (2)解:由題意要使x∈[1,+∞)時, 恒成立,

          ,

          ,則m≤[h(x)]min,

          ,又令g(x)=x﹣lnx,

          ,又x≥1,所以 ,

          所以g(x)在[1,+∞)上單調(diào)遞增,

          即g(x)≥g(1)=1>0,

          即h(x)在[1,+∞)上單調(diào)遞增,

          所以[h(x)]min=h(1)=2,∴m≤2.


          (3)解:∵函數(shù)f(x)在區(qū)間(1,+∞)上單調(diào)遞減,

          (n∈N*,n≥2),

          ,

          ,

          ,

          ,而nf(n)=1+lnn,

          結(jié)論成立.


          【解析】(1)求出函數(shù)的導(dǎo)數(shù),求出a的值,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)問題轉(zhuǎn)化為 ,令 ,根據(jù)函數(shù)的單調(diào)性求出h(x)的最小值,從而求出m的范圍即可;(3)求出ln(n+1)﹣lnn< ,結(jié)合nf(n)=1+lnn,證出結(jié)論即可.
          【考點精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減),還要掌握函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)是奇函數(shù),

          (1)求實數(shù)m的值;

          (2)判斷函數(shù)的單調(diào)性并用定義法加以證明;

          (3)若函數(shù)上的最小值為,求實數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某食品的保鮮時間t(單位:小時)與儲藏溫度x(單位:)滿足函數(shù)關(guān)系且該食品在4的保鮮時間是16小時.

          已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示.給出以下四個結(jié)論:

          該食品在6的保鮮時間是8小時;

          當(dāng)x[66]時,該食品的保鮮時間t隨著x增大而逐漸減少;

          到了此日13時,甲所購買的食品還在保鮮時間內(nèi);

          到了此日14時,甲所購買的食品已然過了保鮮時間.

          其中,所有正確結(jié)論的序號是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,且AC=BD,平面PA⊥平面ABCD,E為PD的中點.

          (1)證明:PB∥平面AEC;
          (2)在△PAD中,AP=2,AD=2 ,PD=4,三棱錐E﹣ACD的體積是 ,求二面角D﹣AE﹣C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的右焦點為F(2,0),M為橢圓的上頂點,O為坐標(biāo)原點,且△MOF是等腰直角三角形.
          (1)求橢圓的方程;
          (2)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點( ).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若橢圓和橢圓的焦點相同且.給出如下四個結(jié)論:

          ①橢圓與橢圓一定沒有公共點 ②

          其中所有正確結(jié)論的序號是( )

          A. ①②③ B. ①③④ C. ①②④ D. ②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點.

          (1)如果直線過拋物線的焦點,求的值;

          (2)如果 ,證明:直線必過一定點,并求出該定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線f(x)=ke2x在點x=0處的切線與直線x﹣y﹣1=0垂直,若x1 , x2是函數(shù)g(x)=f(x)﹣|1nx|的兩個零點,則( )
          A.1<x1x2
          B.<x1x2<1
          C.2<x1x2<2
          D.<x1x2<2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 的一段圖像如圖所示.

          (1)求此函數(shù)的解析式;

          (2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          同步練習(xí)冊答案