日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1(t為參數(shù)),C2(m為參數(shù)).

          (1)將C1,C2的方程化為普通方程,并說明它們分別表示什么曲線;

          (2)設(shè)曲線C1與C2的交點(diǎn)分別為A,B,O為坐標(biāo)原點(diǎn),求△OAB的面積的最小值.

          【答案】1sinθx-cosθy2sin θ=0,y24x,(24

          【解析】

          (1)C1:將兩邊同時(shí)乘以兩邊同時(shí)乘以,消去參數(shù)t即可,C2消去m即可;

          (2)聯(lián)立得y2sinθ﹣4ycosθ﹣8sinθ=0,設(shè)A(x1,y1),B(x2,y2),則y1+y2,y1y2=﹣8,代入S△OAB|y1﹣y2|計(jì)算即可.

          (1)由C1(t為參數(shù))消去t得C1:cosθy=sinθ(x﹣2),得sinθx-cosθy-2sinθ=0,

          由C2(m為參數(shù))消去m得C2:y2=4x,

          (2)聯(lián)立消去x得y2sinθ﹣4ycosθ﹣8sinθ=0,

          設(shè)A(x1,y1),B(x2,y2),則y1+y2,y1y2=﹣8,又C1與x軸的交點(diǎn)(2,0)

          ∴S△OAB|y1﹣y2|

          ,

          所以 sinθ=1時(shí),SOAB取得最小值4

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)擬生產(chǎn)一種如圖所示的圓柱形易拉罐(上下底面及側(cè)面的厚度不計(jì)),易拉罐的體積為,設(shè)圓柱的高度為,底面半徑為,且,假設(shè)該易拉罐的制造費(fèi)用僅與其表面積有關(guān).已知易拉罐側(cè)面制造費(fèi)用為,易拉罐上下底面的制造費(fèi)用均為為常數(shù)).

          (1)寫出易拉罐的制造費(fèi)用(元)關(guān)于的函數(shù)表達(dá)式,并求其定義域;

          (2)求易拉罐制造費(fèi)用最低時(shí)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓為左右焦點(diǎn),為短軸端點(diǎn),長軸長為4,焦距為,且,的面積為.

          (Ⅰ)求橢圓的方程

          (Ⅱ)設(shè)動(dòng)直線橢圓有且僅有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在求出點(diǎn)的坐標(biāo),若不存在.請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】用0與1兩個(gè)數(shù)字隨機(jī)填入如圖所示的5個(gè)格子里,每個(gè)格子填一個(gè)數(shù)字,并且從左到右數(shù),不管數(shù)到哪個(gè)格子,總是1的個(gè)數(shù)不少于0的個(gè)數(shù),則這樣填法的概率為__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)為正四棱錐的底面中心,四邊形為矩形,且,

          1)求正四棱錐的體積;

          2)設(shè)為側(cè)棱上的點(diǎn),且,求直線和平面所成角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過點(diǎn)作一直線與雙曲線相交于、兩點(diǎn),若中點(diǎn),則( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)務(wù)極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線,

          (1)求曲線,的直角坐標(biāo)方程;

          (2)曲線的交點(diǎn)為,求以為直徑的圓與軸的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形中,,.現(xiàn)沿對(duì)角線折起,使點(diǎn)到達(dá)點(diǎn).點(diǎn)、分別在上,且、、、四點(diǎn)共面.

          (1)求證:

          (2)若平面平面,平面與平面夾角為,求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=2x-1,(a∈R),若對(duì)任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案