【題目】如圖,在平行四邊形中,
,
.現(xiàn)沿對(duì)角線
將
折起,使點(diǎn)
到達(dá)點(diǎn)
.點(diǎn)
、
分別在
、
上,且
、
、
、
四點(diǎn)共面.
(1)求證:;
(2)若平面平面
,平面
與平面
夾角為
,求
與平面
所成角的正弦值.
【答案】(1)見證明;(2)
【解析】
(1)本題首先可以設(shè),通過題意即可得出
的長(zhǎng),然后根據(jù)余弦定理即可計(jì)算出
的長(zhǎng)并根據(jù)勾股定理判斷出
,最后根據(jù)線面平行的相關(guān)性質(zhì)即可得出
并證得
;
(2)本題可以通過建立空間直角坐標(biāo)系然后利用平面的法向量來求出與平面
所成角的正弦值。
(1)不妨設(shè),則
,
在中,根據(jù)余弦定理可得
,計(jì)算得
,
因?yàn)?/span>,所以
.
因?yàn)?/span>,且
、
、
、
四點(diǎn)共面,所以
平面
.
又平面平面
,所以
.
而,故
.
(2)因?yàn)槠矫?/span>平面
,且
,所以
平面
,
,
因?yàn)?/span>,所以
平面
,
,
因?yàn)?/span>,平面
與平面
夾角為
,所以
,
從而在中,易知
為
的中點(diǎn),
如圖,建立空間直角坐標(biāo)系,
則,
,
,
,
,
,
,
,
設(shè)平面的一個(gè)法向量為
,則由
,
得,令
,得
.
設(shè)與平面
所成角為
,則
。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為
,下頂點(diǎn)為
,上頂點(diǎn)為
,
是等邊三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線,過點(diǎn)
且斜率為
的直線與橢圓交于點(diǎn)
異于點(diǎn)
,線段
的垂直平分線與直線
交于點(diǎn)
,與直線
交于點(diǎn)
,若
.
(ⅰ)求的值;
(ⅱ)已知點(diǎn),點(diǎn)
在橢圓上,若四邊形
為平行四邊形,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1:(t為參數(shù)),C2:
(m為參數(shù)).
(1)將C1,C2的方程化為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線C1與C2的交點(diǎn)分別為A,B,O為坐標(biāo)原點(diǎn),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在無窮數(shù)列中,
是給定的正整數(shù),
,
.
(Ⅰ)若,寫出
的值;
(Ⅱ)證明:數(shù)列中存在值為
的項(xiàng);
(Ⅲ)證明:若互質(zhì),則數(shù)列
中必有無窮多項(xiàng)為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列三個(gè)正方體中,
均為所在棱的中點(diǎn),過
作正方體的截面.在各正方體中,直線
與平面
的位置關(guān)系描述正確的是
A. 平面
的有且只有①;
平面
的有且只有②③
B. 平面
的有且只有②;
平面
的有且只有①
C. .平面
的有且只有①;
平面
的有且只有②
D. 平面
的有且只有②;
平面
的有且只有③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,側(cè)棱AA1⊥底面ABCD,E為棱AA1的中點(diǎn),AB=2,AA1=3.
(Ⅰ)求證:A1C∥平面BDE;
(Ⅱ)求證:BD⊥A1C;
(Ⅲ)求三棱錐A-BDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上的小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的外接球的體積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為
,直線:
交拋物線
于
兩點(diǎn),
.
(1)若的中點(diǎn)為
,直線
的斜率為
,證明:
為定值;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 離心率等于
,
、
是橢圓上的兩點(diǎn).
(1)求橢圓的方程;
(2)是橢圓上位于直線
兩側(cè)的動(dòng)點(diǎn).當(dāng)
運(yùn)動(dòng)時(shí),滿足
,試問直線
的斜率是否為定值?如果為定值,請(qǐng)求出此定值;如果不是定值,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com