【題目】設(shè)函數(shù).
(1)若函數(shù)是R上的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)a=,
(
,
),
是
的導(dǎo)函數(shù).①若對(duì)任意的x>0,
>0,求證:存在
,使
<0;②若
,求證:
<
.
【答案】(1);(2)見(jiàn)解析
【解析】試題分析: 求導(dǎo)得
,由單調(diào)性推出a的取值范圍
①得
,求導(dǎo),討論
和
,代入
得出結(jié)論②由函數(shù)
單調(diào)遞增得
,證得
,下面證明
,即可得證
解析:(1)由題意, 對(duì)
恒成立,
因?yàn)?/span>,所以
對(duì)
恒成立,
因?yàn)?/span>,所以
,從而
.
(2)①,所以
.
若,則存在
,使
,不合題意,
所以.取
,則
.
此時(shí).
所以存在,使
.
②依題意,不妨設(shè),令
,則
.
由(1)知函數(shù)單調(diào)遞增,所以
.
從而.
因?yàn)?/span>,所以
,
所以.
所以.
下面證明,即證明
,只要證明
.
設(shè),所以
在
恒成立.
所以在
單調(diào)遞減,故
,從而
得證.
所以, 即
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和
滿(mǎn)足
,
,
,
.
(1)證明:是等比數(shù)列,
是等差數(shù)列;
(2)求和
的通項(xiàng)公式;
(3)令,求數(shù)列
的前
項(xiàng)和
的通項(xiàng)公式,并求數(shù)列
的最大值、最小值,并指出分別是第幾項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年冬季青奧會(huì)即將在瑞士盛大開(kāi)幕,為了在射擊比賽中取得優(yōu)異成績(jī),某國(guó)擬從甲、乙兩位選手中派出一位隨代表團(tuán)參賽,現(xiàn)兩人進(jìn)行了5次射擊,射擊成績(jī)?nèi)缦卤恚▎挝唬悍郑瑒t應(yīng)派出選手及其標(biāo)準(zhǔn)差為( )
選手 次數(shù) | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲 | 7.4 | 8.1 | 8.6 | 8.0 | 7.9 |
乙 | 7.8 | 8.4 | 7.6 | 8.1 | 8.1 |
A.甲,0.148B.乙,0.076C.甲,D.乙,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,橢圓
的左、右焦點(diǎn)分別為
,
,已知點(diǎn)
和
都在橢圓上,其中
為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè),
是橢圓上位于
軸上方的兩點(diǎn),且直線
與直線
平行,
與
交于點(diǎn)
,
(i)若,求直線
的斜率;
(ii)求證: 是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以
軸為始邊做兩個(gè)銳角
,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為
(1)求的值; (2)求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解高一學(xué)生的視力健康狀況,在高一年級(jí)體檢活動(dòng)中采用統(tǒng)一的標(biāo)準(zhǔn)對(duì)數(shù)視力表,按照《中國(guó)學(xué)生體質(zhì)健康監(jiān)測(cè)工作手冊(cè)》的方法對(duì)1039名學(xué)生進(jìn)行了視力檢測(cè),判斷標(biāo)準(zhǔn)為:雙眼裸眼視力為視力正常,
為視力低下,其中
為輕度,
為中度,
為重度.統(tǒng)計(jì)檢測(cè)結(jié)果后得到如圖所示的柱狀圖.
(1)求該校高一年級(jí)輕度近視患病率;
(2)根據(jù)保護(hù)視力的需要,需通知檢查結(jié)果為“重度近視”學(xué)生的家長(zhǎng)帶孩子去醫(yī)院眼科進(jìn)一步檢查和確診,并開(kāi)展相應(yīng)的矯治,則該校高一年級(jí)需通知的家長(zhǎng)人數(shù)約為多少人?
(3)若某班級(jí)6名學(xué)生中有2人為視力正常,則從這6名學(xué)生中任選2人,恰有1人視力正常的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、
分別為雙曲線
的左右焦點(diǎn),左右頂點(diǎn)為
、
,
是雙曲線上任意一點(diǎn),則分別以線段
、
為直徑的兩圓的位置關(guān)系為( )
A. 相交B. 相切C. 相離D. 以上情況均有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在
處與直線
相切,求
的值;
(2)在(1)的條件下,求在
上的最大值;
(3)若不等式對(duì)所有的
都成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD=2,
E、F分別為CD、PB的中點(diǎn).
(1)求證:EF⊥平面PAB;
(2)設(shè),求直線AC與平面AEF所成角θ的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com