【題目】在平面直角坐標(biāo)系xOy中,雙曲線:
經(jīng)過點
,其中一條近線的方程為
,橢圓
:
與雙曲線
有相同的焦點
橢圓
的左焦點,左頂點和上頂點分別為F,A,B,且點F到直線AB的距離為
.
求雙曲線
的方程;
求橢圓
的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在三棱錐中,
,
是直角三角形,
,
,點
分別為
的中點.
(1)求證:;
(2)求直線與平面
所成角的大小;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
點P是曲線C1:(x-2)2+y2=4上的動點,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡為曲線C2.
(Ⅰ)求曲線C1,C2的極坐標(biāo)方程;
(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點,設(shè)定點M(2,0),求△MAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿200元減50元;方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、1個白球的甲箱,裝2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
(1)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得優(yōu)惠的概率;
(2)若某顧客選擇方案二,請分別計算該顧客獲得半價優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;
(3)若小明的購物金額為320元,你覺得小明應(yīng)該選取哪個方案,為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體的棱長為1.
正方體
中哪些棱所在的直線與直線
是異面直線?
若M,N分別是
,
的中點,求異面直線MN與BC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線
的兩條漸近線與拋物線
的準(zhǔn)線分別交于
,
兩點.若雙曲線
的離心率為
,
的面積為
,
為坐標(biāo)原點,則拋物線
的焦點坐標(biāo)為 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點為
,
是橢圓上半部分的動點,連接
和長軸的左右兩個端點所得兩直線交
正半軸于
兩點(點
在
的上方或重合).
(1)當(dāng)面積
最大時,求橢圓的方程;
(2)當(dāng)時,在
軸上是否存在點
使得
為定值,若存在,求
點的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達線人數(shù)減少
B. 與2015年相比,2018年二本達線人數(shù)增加了倍
C. 2015年與2018年藝體達線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù)),過點
作斜率為
的直線
與圓
交于
,
兩點.
(1)若圓心到直線
的距離為
,求
的值;
(2)求線段中點
的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com