如圖,是矩形
中
邊上的點,
為
邊的中點,
,現(xiàn)將
沿
邊折至
位置,且平面
平面
.
⑴ 求證:平面平面
;
⑵ 求二面角的大小.
(1)詳見解析;(2).
解析試題分析:(1) 利用折疊前幾何圖形的性質(zhì),推導EF⊥BE,然后借助面面垂直的性質(zhì)定理證明EF⊥平面PBE,進而利用面面垂直的判定定理進行證明;(2)建立空間坐標系,求解兩個半平面的法向量,然后利用向量的夾角公式求解二面角的大小.
試題解析:(1) 證明:由題可知, (3分)
(6分)
(2) 以為原點,以
方向為
軸,以
方向為
軸,以過
點平面
向上的法線方向為
軸,建立坐標系. (7分)
則,
,
,
,
,
,
,
,
, (9分)
, (11分)
綜上二面角大小為
. (12分)
考點:1.線面、面面的垂直關系;2.二面角的求法;3.空間向量在立體幾何中的應用.
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面是直角梯形,
,
,
和
是兩個邊長為
的正三角形,
,
為
的中點,
為
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖已知:菱形所在平面與直角梯形ABCD所在平面互相垂直,
,
點
分別是線段
的中點.
(1)求證:平面平面
;
(2)試問在線段上是否存在點
,使得
平面
,若存在,求
的長并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,
(I)若為
的中點,求證:平面
平面
;
(II)若為線段
上一點,且二面角
的大小為
,試確定
的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA丄平面ABCD,=
=90°
=1200,AD=AB=1,AC交BD于 O 點.
(I)求證:平面PBD丄平面PAC;
(Ⅱ)求三棱錐D-ABP和三棱錐B-PCD的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖1,在直角梯形中,
,
,
,
. 把
沿對角線
折起到
的位置,如圖2所示,使得點
在平面
上的正投影
恰好落在線段
上,連接
,點
分別為線段
的中點.
(I)求證:平面平面
;
(II)求直線與平面
所成角的正弦值;
(III)在棱上是否存在一點
,使得
到點
四點的距離相等?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com