日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知極點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,直線的參數(shù)方程為是參數(shù)),曲線的極坐標(biāo)方程為

          1)求直線的普通方程與曲線的直角坐標(biāo)方程;

          2)設(shè)直線與曲線交于,兩點(diǎn),點(diǎn)為曲線上一點(diǎn),求使面積取得最大值時(shí)的點(diǎn)坐標(biāo).

          【答案】1;.(2

          【解析】

          1)利用加減相元法把直線的參數(shù)方程化為普通方程,根據(jù)極坐標(biāo)方程與直角方程互化公式把曲線的極坐標(biāo)方程化成直角坐標(biāo)方程;

          2)由題知線段的長(zhǎng)度為定值,若使面積取得最大值,只需點(diǎn)到直線的距離最大.根據(jù)橢圓的參數(shù)方程表示點(diǎn)的坐標(biāo),根據(jù)點(diǎn)到直線距離,結(jié)合輔助角公式進(jìn)行求解即可.

          1)直線的參數(shù)方程消參,得普通方程為

          代入曲線的極坐標(biāo)方程,

          得曲線的直角坐標(biāo)方程為

          2)由題知線段的長(zhǎng)度為定值,若使面積取得最大值,只需點(diǎn)到直線的距離最大.

          因?yàn)辄c(diǎn)在曲線上,所以設(shè),

          則點(diǎn)到直線的距離為

          ,

          其中,.當(dāng)且僅當(dāng)時(shí),等號(hào)成立.

          此時(shí),即

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】1)已知函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

          2)已知函數(shù),討論函數(shù)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】方程x2+x10的解可視為函數(shù)yx+的圖象與函數(shù)y的圖象交點(diǎn)的橫坐標(biāo),若x4+ax40的各個(gè)實(shí)根x1,x2,xk(k≤4)所對(duì)應(yīng)的點(diǎn)(xi ,)i1,2,…,k)均在直線yx的同側(cè),則實(shí)數(shù)a的取值范圍是      .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方體中,棱的中點(diǎn)為,若光線從點(diǎn)出發(fā),依次經(jīng)三個(gè)側(cè)面,反射后,落到側(cè)面(不包括邊界),則入射光線與側(cè)面所成角的正切值的范圍是(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)是橢圓的左、右焦點(diǎn),點(diǎn)是該橢圓上一點(diǎn),若當(dāng)時(shí),面積達(dá)到最大,最大值為.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)設(shè)為坐標(biāo)原點(diǎn),是否存在過左焦點(diǎn)的直線,與橢圓交于兩點(diǎn),使得的面積為?若存在,求出直線的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】ABC的內(nèi)角A,BC的對(duì)邊分別為a,b,c,已知△ABC的面積為

          (1)求sinBsinC;

          (2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐的底面是邊長(zhǎng)為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).

          1求證:平面平面BCF;

          2平面PDE,,求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=a1nxax+1aRa≠0).

          1)求函數(shù)fx)的單調(diào)區(qū)間;

          2)求證:n≥2,nN*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,設(shè)拋物線的焦點(diǎn)為F,點(diǎn)P是半橢圓上的一點(diǎn),過點(diǎn)P作拋物線C的兩條切線,切點(diǎn)分別為A、B,且直線PA、PB分別交y軸于點(diǎn)MN

          1)證明:;

          (2)求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案