【題目】已知函數(shù)f(x)=a1nx﹣ax+1(a∈R且a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:(n≥2,n∈N*).
【答案】(1)當(dāng)a>0時(shí), f(x)的單調(diào)遞增區(qū)間(0,1),單調(diào)遞減區(qū)間(1,+∞);
當(dāng)a<0時(shí), f(x)的單調(diào)遞減區(qū)間(0,1),單調(diào)遞增區(qū)間(1,+∞);
(2)證明,見解析
【解析】
(1)對f(x)求導(dǎo),分a>0,a<0兩種情況討論,分析函數(shù)單調(diào)性即可;
(2)令a=1,由(1)可證得lnx<x﹣1,即,疊乘可得證.
(1)∵f(x)=a1nx﹣ax+1,∴f′(x)a
,
①當(dāng)a>0時(shí),
若0<x<1,則f′(x)>0,若x>1,f′(x)<0,
∴f(x)的單調(diào)遞增區(qū)間(0,1),單調(diào)遞減區(qū)間(1,+∞);
②當(dāng)a<0時(shí),
若0<x<1,則f′(x)<0,若x>1,f′(x)>0,
∴f(x)的單調(diào)遞減區(qū)間(0,1),單調(diào)遞增區(qū)間(1,+∞);
(2)令a=1,則f(x)=lnx﹣x+1,所以f(1)=0,
由(1)可知f(x)在[1,+∞)單調(diào)遞減,
故f(x)≤f(1),(當(dāng)x=1時(shí)取等號),
所以lnx﹣x+1<0,即lnx<x﹣1,
從而有0<lnn<n﹣1,(n≥2,n∈N*),
即(n≥2,n∈N*),
∴(n≥2,n∈N*).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓離心率為,且與雙曲線
有相同焦點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線
與橢圓交于
、
兩點(diǎn),原點(diǎn)
在以
為直徑的圓上,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,直線
的參數(shù)方程為
(
是參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)直線與曲線
交于
,
兩點(diǎn),點(diǎn)
為曲線
上一點(diǎn),求使
面積取得最大值時(shí)的
點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式的解集中的整數(shù)解恰好有三個(gè),則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形
,
,
平面
,
是棱
上的一點(diǎn).
(1)證明:平面平面
;
(2)若,
是
的中點(diǎn),
,
,且二面角
的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
,(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)若射線與曲線
相交于點(diǎn)
,將
逆時(shí)針旋轉(zhuǎn)
后,與曲線
相交于點(diǎn)
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的廣告支出(單位:萬元)與銷售收入
(單位:萬元)之間有下表所對應(yīng)的數(shù)據(jù):
廣告支出 | 1 | 2 | 3 | 4 |
銷售收入 | 12 | 28 | 42 | 56 |
(1)畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出對
的線性回歸方程;
(3)若廣告費(fèi)為9萬元,則銷售收入約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為,
.
(1)求直線與圓
相切的概率;
(2)將,
,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com