【題目】將函數(shù)的圖像向右平移
個單位長度,再將所得圖像上的每個點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,所得圖像關(guān)于直線
對稱,則
的最小正值為( )
A. B.
C.
D.
【答案】C
【解析】
由題意根據(jù)函數(shù)y=Asin(ωx+)的圖象變換規(guī)律,可得所得圖象對應(yīng)的函數(shù)為 y=2sin(x
2
),再利用正弦函數(shù)的圖象的對稱性,求得
,k∈z,由此求得
的最小值.
將函數(shù)的圖象向右平移
(
>0)個單位,
可得y=2sin[2(x﹣φ)]=2sin(2x
2
)的圖象;
再將圖象上每一點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),
所得圖象對應(yīng)的函數(shù)為 y=2sin(x2
).
再根據(jù)所得圖象關(guān)于直線x對稱,可得
2
=kπ
,k∈z,
即,故
的最小正值為
,
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓1的左右焦點分別為F1、F2,過焦點F1的直線交橢圓于A、B兩點,若△ABF2的內(nèi)切圓的面積為4,設(shè)A、B兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),則|y1﹣y2|值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點
在橢圓
上,橢圓
的離心率是
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點為橢圓長軸的左端點,
為橢圓上異于橢圓
長軸端點的兩點,記直線
斜率分別為
,若
,請判斷直線
是否過定點?若過定點,求該定點坐標(biāo),若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線的方程為
,
.
(1)若在兩坐標(biāo)軸上的截距相等,求
的方程;
(2)若與兩坐標(biāo)軸圍成的三角形的面積為6,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升,
升,
升,1斗為10升,則下列判斷正確的是( )
A. ,
,
依次成公比為2的等比數(shù)列,且
B. ,
,
依次成公比為2的等比數(shù)列,且
C. ,
,
依次成公比為
的等比數(shù)列,且
D. ,
,
依次成公比為
的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為
,將
沿對角線
折起,使平面
平面
,得到如圖所示的三棱錐
,若
為
邊的中點,
分別為
上的動點(不包括端點),且
,設(shè)
,則三棱錐
的體積取得最大值時,三棱錐
的內(nèi)切球的半徑為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足:對任意的n∈N*,都有an+1+Sn+1=1,又a1.
(1)求數(shù)列{an}的通項公式;
(2)令bn=log2an,求(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,函數(shù)
在
是否存在零點?如果存在,求出零點;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓過點
,離心率為
,左右焦點分別為
,過點
的直線
交橢圓于
兩點。
(1)求橢圓的方程;
(2)當(dāng)的面積為
時,求直線
的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com