【題目】在平面直角坐標(biāo)系中,以原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為:
(
為參數(shù)),
,
為直線
上距離為
的兩動點,點
為曲線
上的動點且不在直線
上.
(1)求曲線的普通方程及直線
的直角坐標(biāo)方程.
(2)求面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
,若
、
、
是
的三條邊長,則下列結(jié)論:①對于一切
都有
;②存在
使
、
、
不能構(gòu)成一個三角形的三邊長;③
為鈍角三角形,存在
,使
,其中正確的個數(shù)為______個
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市有東、西、南、北四個進入城區(qū)主干道的入口,在早高峰時間段,時常發(fā)生交通擁堵,交警部門記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設(shè)每個人口是否發(fā)生擁堵相互獨立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.
11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11.10 | 11.11 | 11.12 | 11.13 | 11.14 | 11.15 | ||||||||||||||||
東入口 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ● | ○ | ● | ● | ● | ○ | ● | |||||||||||||||
西入口 | ○ | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ● | ○ | ○ | |||||||||||||||
南入口 | ○ | ● | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ● | ○ | ○ | ○ | ● | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
11.16 | 11.17 | 11.18 | 11.19 | 11.20 | 11.21 | 11.22 | 11.23 | 11.24 | 11.25 | 11.26 | 11.27 | 11.28 | 11.29 | 11.30 | ||||||||||||||||
東入口 | ● | ○ | ○ | ● | ○ | ○ | p>○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | |||||||||||||||
西入口 | ● | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | |||||||||||||||
南入口 | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
(1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.
(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費用為(
,且
)元.方案二:在早高峰時間段若某主干道入口發(fā)生擁堵,交警部門則需臨時調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當(dāng)日需給每位交通協(xié)管員的費用為200元.以四個主干道入口聘請交通協(xié)管員的日總費用的數(shù)學(xué)期望為依據(jù),你認(rèn)為在這兩個方案中應(yīng)該如何選擇?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點
(1)求點與拋物線
的焦點
的距離;
(2)設(shè)斜率為的直線
與拋物線
交于
兩點,若
的面積為
,求直線
的方程;
(3)是否存在定圓,使得過曲線
上任意一點
作圓
的兩條切線,與曲線
交于另外兩點
時,總有直線
也與圓
相切?若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路經(jīng)過三個景點
、
、
,景區(qū)管委會又開發(fā)了風(fēng)景優(yōu)美的景點
,經(jīng)測量景點
位于景點
的北偏東
方向
處,位于景點
的正北方向,還位于景點
的北偏西
方向上,已知
.
(1)景區(qū)管委會準(zhǔn)備由景點向景點
修建一條筆直的公路,不考慮其他因素,求出這條公路的長;(結(jié)果精確到
)
(2)求景點與景點
之間的距離.(結(jié)果精確到
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某紀(jì)念章從某年某月某日起開始上市,通過市場調(diào)査,得到該紀(jì)念章每枚的市場價
(單位:元)與上市時間
(單位:天)的數(shù)據(jù)如下:
上市時間 | |||
市場價 |
(1)根據(jù)上表數(shù)計,從下列函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價與上市時間
的變化關(guān)系并說明理由:①
;②
;③
;④
;
(2)利用你選取的函數(shù),求該紀(jì)念章市場價最低時的上市天數(shù)及最低的價格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前
項和為
,若
,
.
(1)證明:當(dāng)時,
;
(2)求數(shù)列的通項公式;
(3)設(shè),求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家每年都會對中小學(xué)生進行體質(zhì)健康監(jiān)測,一分鐘跳繩是監(jiān)測的項目之一.今年某小學(xué)對本校六年級300名學(xué)生的一分鐘跳繩情況做了統(tǒng)計,發(fā)現(xiàn)一分鐘跳繩個數(shù)最低為10,最高為189.現(xiàn)將跳繩個數(shù)分成,
,
,
,
,
6組,并繪制出如下的頻率分布直方圖.
(1)若一分鐘跳繩個數(shù)達(dá)到160為優(yōu)秀,求該校六年級學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù);
(2)上級部門要對該校體質(zhì)監(jiān)測情況進行復(fù)查,發(fā)現(xiàn)每組男、女學(xué)生人數(shù)比例有很大差別,組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
,
組男、女人數(shù)之比為
.試估計此校六年級男生一分鐘跳繩個數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列:
,
,
,
(
),與數(shù)列
:
,
,
,
,
(
),記
.
(1)若,求
的值;
(2)求的表達(dá)式;
(3)已知,且存在正整數(shù)
,使得在
中有4項為100,求
的值,并指出哪4項為100.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com