【題目】在△ABC中,已知 ,sinB=cosAsinC,S△ABC=6,P為線段AB上的點(diǎn),且
,則xy的最大值為 .
【答案】3
【解析】解:△ABC中,設(shè)AB=c,BC=a,AC=b,∵sinB=cosAsinC,sin(A+C)=sinCcosnA,
即sinAcosC+sinCcosA=sinCcosA.
∴sinAcosC=0,∵sinA≠0,∴cosC=0,C=90°.
∵ =9,S△ABC=6,∴bccosA=9,
bcsinA=6,∴tanA=
.
根據(jù)直角三角形可得sinA= ,cosA=
,bc=15,∴c=5,b=3,a=4.
以AC所在的直線為x軸,以BC所在的直線為y軸建立直角坐標(biāo)系可得C(0,0),A(3,0),B(0,4).
P為線段AB上的一點(diǎn),則存在實(shí)數(shù)λ使得 =λ
+(1﹣λ)
=(3λ,4﹣4λ)(0≤λ≤1).
設(shè) =
,
=
,則|
|=|
|=1,且
=(1,0),
=(0,1).
∴ =(x,0)+(0,y)=(x,y),可得x=3λ,y=4﹣4λ則4x+3y=12,
12=4x+3y≥2 ,解得xy≤3,
故所求的xy最大值為:3.
故答案為 3.
由條件求得bccosA=9, bcsinA=6,tanA=
,可得c=5,b=3,a=4,以AC所在的直線為x軸,以BC所在的直線為y軸建立直角坐標(biāo)系可得C(0,0),A(3,0),B(0,4).設(shè)
=
,
=
,則
=(x,y),可得x=3λ,y=4﹣4λ則4x+3y=12,利用基本不等式求解最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+a|.
(1)若a=2,解關(guān)于x的不等式f(x)+f(x﹣3)≥5;
(2)若關(guān)于x的不等式f(x)﹣f(x+2)+4≥|1﹣3m|恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱的所有棱長(zhǎng)都相等,且側(cè)棱垂直于底面,由
沿棱柱側(cè)面經(jīng)過(guò)棱
到點(diǎn)
的最短路線長(zhǎng)為
,設(shè)這條最短路線與
的交點(diǎn)為
.
(1)求三棱柱的體積;
(2)證明:平面平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
,且
).
(1)當(dāng)時(shí),設(shè)集合
,求集合
;
(2)在(1)的條件下,若,且滿足
,求實(shí)數(shù)
的取值范圍;
(3)若對(duì)任意的,存在
,使不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象過(guò)點(diǎn)
,且與
軸有唯一的交點(diǎn)
.
(1)求的表達(dá)式;
(2)設(shè)函數(shù),若
上是單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù),記此函數(shù)的最小值為
,求
的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在
上的奇函數(shù),且
偶函數(shù)
的定義域?yàn)?/span>
,且當(dāng)
時(shí),
.若存在實(shí)數(shù)
,使得
成立,則實(shí)數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB). (Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大;
(Ⅱ)已知向量 =(sinA,cosA),
=(cosB,sinB),求|3
﹣2
|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,
底面
,且
為等邊三角形,
,
為
的中點(diǎn).
(1)求證:直線平面
;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程x3﹣ax+2=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( )
A.(2,+∞)
B.(3,+∞)
C.(0,3 )
D.(﹣∞,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com