日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如果點(diǎn)P在平面區(qū)域
          2x-y+2≥0
          x+y-2≤0
          2y-1≥0
          內(nèi),點(diǎn)Q在曲線x2+y2-4x-4y+7=0上,則|PQ|的最小值為(  )
          分析:先將曲線x2+y2-4x-4y+7=0化成圓的標(biāo)準(zhǔn)方程,得到Q在以點(diǎn)C(2,2)為圓心,半徑為1的圓上運(yùn)動(dòng).然后作出題中不等式組對(duì)應(yīng)的平面區(qū)域,作出點(diǎn)C到區(qū)域邊界的直線AD:x+y-2=0的垂線,可得當(dāng)點(diǎn)P與垂足重合,且動(dòng)點(diǎn)Q恰好落在垂線與圓C的交點(diǎn)時(shí),|PQ|達(dá)到最小值.最后用點(diǎn)到直線的距離公式,可以算出點(diǎn)C到直線AD的距離,從而得到|PQ|的最小值為
          2
          -1
          解答:解:曲線x2+y2-4x-4y+7=0化成(x-2)2+(y-2)2=1
          得圓的標(biāo)準(zhǔn)方程,曲線表示的是以C(2,2)為圓心,半徑為1的圓.
          因此|PQ|的最小值,化為先求點(diǎn)C到平面區(qū)域
          2x-y+2≥0
          x+y-2≤0
          2y-1≥0
          內(nèi)點(diǎn)的最小值,再用這個(gè)最小值減去半徑1即可.
          作出平面區(qū)域
          2x-y+2≥0
          x+y-2≤0
          2y-1≥0
          ,如右圖△BAD及其內(nèi)部
          過點(diǎn)C作出直線AD:x+y-2=0的垂線,
          當(dāng)點(diǎn)P與垂足重合,且動(dòng)點(diǎn)Q恰好落在垂線與圓C的交點(diǎn)時(shí),
          |PQ|達(dá)到最小值.
          ∵點(diǎn)C(2,2)到直線AD:x+y-2=0的距離為d=
          |2+2-2|
          1212
          =
          2

          ∴|PQ|的最小值為
          2
          -1

          故選D
          點(diǎn)評(píng):本題以圓上的動(dòng)點(diǎn)到三角形區(qū)域內(nèi)點(diǎn)的最小距離問題為載體,著重考查了簡(jiǎn)單線性規(guī)劃的應(yīng)用、圓的標(biāo)準(zhǔn)方程和點(diǎn)到直線距離公式等知識(shí)點(diǎn),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如果點(diǎn)P在平面區(qū)域
          2x-y+2≥0
          x-2y+1≤0
          x+y-2≤0
          上,點(diǎn)Q在曲線x2+(y+2)2=1上,那么|PQ|的最小值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如果點(diǎn)P在平面區(qū)域
          2x-y+2≥0
          x-2y+1≤0
          x+y-2≤0
          上,點(diǎn)Q在曲線x2+(y+2)2=2上,那么|PQ|的最小值為
          5
          -
          2
          5
          -
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如果點(diǎn)P在平面區(qū)域
          2x-y+2≥0
          x+y-2≤0
          2y-1≥0
          上,點(diǎn)Q在曲線x2+(y+3)2=1上,那么|PQ|的最小值為
          5
          2
          5
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如果點(diǎn)P在平面區(qū)域
          2x-y+2≥0
          x+y-2≤0
          y-1≥0
          內(nèi),點(diǎn)Q在曲線(x+2)2+y2=
          1
          4
          上,那么|PQ|的最小值為( 。
          A、
          1
          2
          B、
          13
          -1
          2
          C、
          10
          -1
          2
          D、
          2
          -1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如果點(diǎn)P在平面區(qū)域
          2x-y+2≥0
          x+y-2≤0
          2y-1≥0
          內(nèi),點(diǎn)Q(0,-2),那么|PQ|的最小值為(  )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案