日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列,滿足:

          1)若,求數(shù)列的通項(xiàng)公式;

          2)若,且

          ,求證:數(shù)列為等差數(shù)列;

          若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)應(yīng)滿足的條件.

          【答案】1

          2根據(jù)等差數(shù)列的定義,證明相鄰兩項(xiàng)的差為定值來得到證明.從第二項(xiàng)起滿足題意即可.

          當(dāng),數(shù)列任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次

          【解析】

          試題解:(1)當(dāng)時(shí),有

          也滿足上式,所以數(shù)列的通項(xiàng)公式是4

          2因?yàn)閷θ我獾?/span>,有,所以,

          所以,數(shù)列為等差數(shù)列. 8

          設(shè)(其中為常數(shù)且

          所以,,

          即數(shù)列均為以7為公差的等差數(shù)列. 10

          設(shè)

          (其中中一個(gè)常數(shù))

          當(dāng)時(shí),對任意的,有12

          當(dāng)時(shí),

          )若,則對任意的,所以數(shù)列為遞減數(shù)列;

          )若,則對任意的,所以數(shù)列為遞增數(shù)列.

          綜上所述,集合

          當(dāng)時(shí),數(shù)列中必有某數(shù)重復(fù)出現(xiàn)無數(shù)次;

          當(dāng)時(shí),數(shù)列均為單調(diào)數(shù)列,任意一個(gè)數(shù)在這6個(gè)數(shù)列中最多出現(xiàn)一次,所以數(shù)列任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次. 18

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知矩形,,將沿對角線進(jìn)行翻折,得到三棱錐,則在翻折的過程中,有下列結(jié)論正確的有_____.

          ①三棱錐的體積的最大值為;

          ②三棱錐的外接球體積不變;

          ③三棱錐的體積最大值時(shí),二面角的大小是60°;

          ④異面直線所成角的最大值為90°.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),CD兩點(diǎn)的坐標(biāo)為,曲線上的動點(diǎn)P滿足.又曲線上的點(diǎn)A、B滿足.

          1)求曲線的方程;

          2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);

          3)求證:原點(diǎn)到直線AB的距離為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如題所示:扇形ABC是一塊半徑為2千米,圓心角為60°的風(fēng)景區(qū),P點(diǎn)在弧BC上,現(xiàn)欲在風(fēng)景區(qū)中規(guī)劃三條三條商業(yè)街道PQ、QR、RP,要求街道PQAB垂直,街道PRAC垂直,直線PQ表示第三條街道。

          (1)如果P位于弧BC的中點(diǎn),求三條街道的總長度;

          (2)由于環(huán)境的原因,三條街道PQ、PR、QR每年能產(chǎn)生的經(jīng)濟(jì)效益分別為每千米300萬元、200萬元及400萬元,問:這三條街道每年能產(chǎn)生的經(jīng)濟(jì)總效益最高為多少?(精確到1萬元)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,底面.點(diǎn)、分別為棱、、的中點(diǎn),是線段的中點(diǎn),

          1)求證:平面;

          2)求二面角的正弦值;

          3)已知點(diǎn)在棱上,且直線與直線所成角的余弦值為,求線段的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】月,中國良渚古城遺址獲準(zhǔn)列入世界遺產(chǎn)名錄,標(biāo)志著中華五千年文明史得到國際社會認(rèn)可.良渚古城遺址是人類早期城市文明的范例,實(shí)證了中華五千年文明史.考古科學(xué)家在測定遺址年齡的過程中利用了放射性物質(zhì)因衰變而減少這一規(guī)律.已知樣本中碳的質(zhì)量隨時(shí)間(單位:年)的衰變規(guī)律滿足表示碳原有的質(zhì)量),則經(jīng)過年后,碳的質(zhì)量變?yōu)樵瓉淼?/span>________;經(jīng)過測定,良渚古城遺址文物樣本中碳的質(zhì)量是原來的,據(jù)此推測良渚古城存在的時(shí)期距今約在________年到年之間.(參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)討論的單調(diào)性.

          (2)試問是否存在,使得恒成立?若存在,求的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在棱長為2的正方體中,點(diǎn)是對角線上的點(diǎn)(點(diǎn)、不重合),則下列結(jié)論正確的個(gè)數(shù)為(

          ①存在點(diǎn),使得平面平面

          ②存在點(diǎn),使得平面;

          ③若的面積為,則;

          ④若、分別是在平面與平面的正投影的面積,則存在點(diǎn),使得.

          A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)討論的單調(diào)性;

          (2)當(dāng)時(shí),若函數(shù)的圖象有且僅有一個(gè)交點(diǎn),的值(其中表示不超過的最大整數(shù),.

          參考數(shù)據(jù):

          查看答案和解析>>

          同步練習(xí)冊答案