日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
          已知負(fù)數(shù)和正數(shù),且對任意的正整數(shù)n,當(dāng)≥0時(shí), 有[, ]=
          [, ];當(dāng)<0時(shí), 有[, ]= [, ].
          (1)求證數(shù)列{}是等比數(shù)列;
          (2)若,求證;
          (3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請說明理由
          (1)當(dāng)≥0時(shí),bn+1-an+1= -an= ;
          當(dāng)<0, bn+1-an+1= bn-= .
          所以,總有bn+1-an+1= (bn-an),                      
          ,可得,                     
          所以數(shù)列{bn-an}是等比數(shù)列.                          ………………4分
          (2)①由,可得,故有,
          ,,從而,
          故當(dāng)n=1時(shí),成立.                           ………………6分
          ②假設(shè)當(dāng)時(shí),成立,即,      
          ,可得,                   
          , 故有,
          ,                       ………………9分
          ,故有
          , ,故
          ∴當(dāng)時(shí),成立.
           綜合①②可得對一切正整數(shù)n,都有.             ………………12分
          (3)假設(shè)存在,使得數(shù)列為常數(shù)數(shù)列,
          由(1)可得bn-an=()n-1,又,
          bn=()n-1,                                 ………………14分
          恒成立,可知≥0,即()n ≥0恒成立,
          即2n對任意的正整數(shù)n恒成立,                 ………………16分
          是正數(shù),故n對任意的正整數(shù)n恒成立,
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823170416658519.gif" style="vertical-align:middle;" />是常數(shù),故n不可能對任意正整數(shù)n恒成立.
          故不存在,使得數(shù)列為常數(shù)數(shù)列.          ………………18分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分)
          設(shè)數(shù)列
          (1)求;  
          (2)求的表達(dá)式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分10分)
          已知數(shù)列中,,且
          (1)設(shè),證明是等比數(shù)列;
          (2)求數(shù)列的通項(xiàng)公式;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對任意,的等比中項(xiàng).
          (Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
          (Ⅱ)證明;
          (Ⅲ)設(shè)集合,,且,若存在,使對滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)數(shù)列滿足關(guān)系式:p是常數(shù)).
          (Ⅰ)求;
          (Ⅱ)猜想的通項(xiàng)公式,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)等差數(shù)列的前項(xiàng)和為,若,,則當(dāng)取最小值時(shí),等于
          A.6B.7 C.8D.9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知等差數(shù)列的前項(xiàng)和為,且,,則數(shù)列的通項(xiàng)公式為、
          (   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          數(shù)列的通項(xiàng)公式為,達(dá)到最小時(shí),n等于_______________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          正項(xiàng)數(shù)列的前n項(xiàng)的乘積,則數(shù)列的前n項(xiàng)和中的最大值是       (   )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案