日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(文科做)已知函數(shù)f(x)=x﹣ ﹣(a+2)lnx,其中實(shí)數(shù)a≥0.
          (1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;
          (2)若a>0,討論函數(shù)f(x)的單調(diào)性.

          【答案】
          (1)解:∵f(x)=x﹣2lnx,∴f′(x)=

          令f′(x)=0,∴x=2.列表如下,

          x

          1

          (1,2)

          2

          (2,3)

          3

          f'(x)

          0

          +

          f(x)

          1

          2﹣2ln2

          3﹣2ln3

          從上表可知,

          ∵f(3)﹣f(1)=2﹣2ln3<0,∴f(1)>f(3),

          函數(shù)f(x)在區(qū)間[1,3]上的最大值是1,最小值為2﹣2ln2


          (2)解: ,

          ①當(dāng)a>2時(shí),x∈(0,2)∪(a,+∞)時(shí),f′(x)>0;當(dāng)x∈(2,a)時(shí),f′(x)<0,

          ∴f(x)的單調(diào)增區(qū)間為(0,2),(a,+∞),單調(diào)減區(qū)間為(2,a);

          ②當(dāng)a=2時(shí),∵ ,

          ∴f(x)的單調(diào)增區(qū)間為(0,+∞);

          ③當(dāng)0<a<2時(shí),x∈(0,a)∪(2,+∞)時(shí),f′(x)>0;當(dāng)x∈(a,2)時(shí),f′(x)<0,

          ∴f(x)的單調(diào)增區(qū)間為(0,a),(2,+∞),單調(diào)減區(qū)間為(a,2);

          綜上,當(dāng)a>2時(shí),f(x)的單調(diào)增區(qū)間為(0,2),(a,+∞),單調(diào)減區(qū)間為(2,a);

          當(dāng)a=2時(shí),f(x)的單調(diào)增區(qū)間為(0,+∞);

          當(dāng)0<a<2時(shí),f(x)的單調(diào)增區(qū)間為(0,a),(2,+∞),單調(diào)減區(qū)間為(a,2)


          【解析】(1)求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)在閉區(qū)間上的最值即可;(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,確定導(dǎo)函數(shù)的符號(hào),從而求出函數(shù)的單調(diào)區(qū)間即可.
          【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓C:x2+y2﹣2x﹣1=0,直線l:3x﹣4y+12=0,圓C上任意一點(diǎn)P到直線l的距離小于2的概率為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) ,

          (Ⅰ)當(dāng) 時(shí), 恒成立,求的取值范圍;

          (Ⅱ)當(dāng) 時(shí),研究函數(shù)的零點(diǎn)個(gè)數(shù);

          (Ⅲ)求證: (參考數(shù)據(jù): ).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)定義域?yàn)镽的奇函數(shù) (a為實(shí)數(shù)). (Ⅰ)求a的值;
          (Ⅱ)判斷f(x)的單調(diào)性(不必證明),并求出f(x)的值域;
          (Ⅲ)若對(duì)任意的x∈[1,4],不等式f(k﹣ )+f(2﹣x)>0恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若不等式lg ≥(x﹣1)lg3對(duì)任意x∈(﹣∞,1]恒成立,則a的取值范圍是(
          A.(﹣∞,0]
          B.[1,+∞)
          C.[0,+∞)
          D.(﹣∞,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列的前項(xiàng)和為, , .等 差數(shù)列中, ,且公差

          求數(shù)列的通項(xiàng)公式;

          (Ⅱ)是否存在正整數(shù),使得?.若存在,求出的最小值;若 不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹(shù)的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿(mǎn)足如下關(guān)系: .此外,還需要投入其它成本(如施肥的人工費(fèi)等)百元.已知這種水果的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水果樹(shù)獲得的利潤(rùn)為(單位:百元).

          (1)求的函數(shù)關(guān)系式;

          當(dāng)投入的肥料費(fèi)用為多少時(shí),該水果樹(shù)獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)坐標(biāo)為(0,1),其離心率為
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)橢圓上一點(diǎn)P滿(mǎn)足∠F1PF2=60°,其中F1 , F2為橢圓的左右焦點(diǎn),求△F1PF2的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解關(guān)于x的不等式ax2﹣(a+1)x+1<0.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案