日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若不等式lg ≥(x﹣1)lg3對任意x∈(﹣∞,1]恒成立,則a的取值范圍是(
          A.(﹣∞,0]
          B.[1,+∞)
          C.[0,+∞)
          D.(﹣∞,1]

          【答案】D
          【解析】解:不等式lg ≥(x﹣1)lg3,
          即不等式lg ≥lg3x1 ,
          ≥3x1 , 整理可得a≤ =( x+( x ,
          ∵y=( x+( x在(﹣∞,1)上單調(diào)遞減,
          ∴x∈(﹣∞,1)時,y=( x+( x + =1,
          ∴要使原不等式恒成立,只需a≤1,
          即a的取值范圍是(﹣∞,1].
          故選:D.
          原不等式可整理為a≤ =( x+( x , 然后轉(zhuǎn)化為求函數(shù)y=( x+( x在(﹣∞,1)上的最小值即可,利用單調(diào)性可求最值.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ABC=90°,點E、F分別是棱AB、BB1的中點,當二面角C1﹣AA1﹣B為45o時,直線EF和BC1所成的角為(
          A.45o
          B.60o
          C.90o
          D.120o

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C 的右焦點為F,右頂點為A,設(shè)離心率為e,且滿足,其中O為坐標原點.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)過點的直線l與橢圓交于MN兩點,求△OMN面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,線段AB在平面α內(nèi),線段BD⊥AB,線段AC⊥α,且AB= ,AC=BD=12,CD= ,求線段BD與平面α所成的角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:極坐標系與參數(shù)方程

          在直角坐標系xOy中,曲線M的參數(shù)方程為 (α為參數(shù)),若以直角坐標系中的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線N的極坐標方程為 (t為參數(shù)).

          (1)求曲線M的普通方程和曲線N的直角坐標方程;

          (2)若曲線N與曲線M有公共點,求t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(文科做)已知函數(shù)f(x)=x﹣ ﹣(a+2)lnx,其中實數(shù)a≥0.
          (1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;
          (2)若a>0,討論函數(shù)f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) . (Ⅰ)當m=8時,求f(﹣4)的值;
          (Ⅱ)當m=8且x∈[﹣8,8]時,求|f(x)|的最大值;
          (Ⅲ)對任意的實數(shù)m∈[0,2],都存在一個最大的正數(shù)K(m),使得當x∈[0,K(m)]時,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此時相應(yīng)的m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響.對近8年的年宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

          表中.

          (1)根據(jù)散點圖判斷哪一個適宜作為年銷售量關(guān)于年宣傳費的回歸類型?(給出判斷即可,不必說明理由)

          (2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

          (3)已知這種產(chǎn)品的利潤的的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問題:

          (ⅰ)年宣傳費時,年銷售量及年利潤的預(yù)報值是多少?

          (ⅱ)年宣傳費為何值時,年利潤的預(yù)報值最大?

          附:對于一組數(shù)據(jù),其回歸直線的的斜率和截距的最小二乘估計為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π. (Ⅰ)求a和ω的值;
          (Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.

          查看答案和解析>>

          同步練習冊答案