日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R.
          (1)當(dāng)a=1時(shí),解不等式f(x)≥5;
          (2)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.

          【答案】
          (1)解:當(dāng)a=1時(shí),f(x)=|x﹣2|+|2x+1|,.

          由f(x)≥5得x﹣2|+|2x+1|≥5.

          當(dāng)x≥2時(shí),不等式等價(jià)于x﹣2+2x+1≥5,解得x≥2,所以x≥2;

          當(dāng)﹣ <x<2時(shí),不等式等價(jià)于2﹣x+2x+1≥5,即x≥2,所以此時(shí)不等式無(wú)解;

          當(dāng)x≤﹣ 時(shí),不等式等價(jià)于2﹣x﹣2x﹣1≥5,解得x≤﹣ ,所以x≤﹣

          所以原不等式的解集為(﹣∞,﹣ ]∪[2,+∞).


          (2)解:f(x)+|x﹣2|=2|x﹣2|+|2x+a|=|2x﹣4|+|2x+a|≥|2x+a﹣(2x﹣4)|=|a+4|

          因?yàn)樵}等價(jià)于(f(x)+|x﹣2|)min<3,

          所以|a+4|<3,所以﹣7<a<﹣1為所求實(shí)數(shù)a的取值范圍


          【解析】(1)當(dāng)a=1時(shí),根據(jù)絕對(duì)值不等式的解法即可解不等式f(x)≥5;(2)求出f(x)+|x﹣2|的最小值,根據(jù)不等式的關(guān)系轉(zhuǎn)化為(f(x)+|x﹣2|)min<3即可求a的取值范圍.
          【考點(diǎn)精析】本題主要考查了絕對(duì)值不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=3mx﹣ ﹣(3+m)lnx,若對(duì)任意的m∈(4,5),x1 , x2∈[1,3],恒有(a﹣ln3)m﹣3ln3>|f(x1)﹣f(x2)|成立,則實(shí)數(shù)a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)的定義域?yàn)?/span>A,若時(shí)總有為單函數(shù).例如,函數(shù)=2x+1)是單函數(shù).下列命題:

          函數(shù)=xR)是單函數(shù);為單函數(shù),fAB為單函數(shù),則對(duì)于任意bB,它至多有一個(gè)原象;

          函數(shù)fx)在某區(qū)間上具有單調(diào)性,則fx)一定是單函數(shù).其中的真命題是 .(寫(xiě)出所有真命題的編號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在某超市,隨機(jī)調(diào)查了100名顧客購(gòu)物時(shí)使用手機(jī)支付支付的情況,得到如下的列聯(lián)表,已知從其中使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.

          (1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認(rèn)為“超市購(gòu)物用手機(jī)支付與年齡有關(guān)”.

          (2)現(xiàn)按照“使用手機(jī)支付”和“不使用手機(jī)支付”進(jìn)行分層抽樣,從這100名顧客中抽取容量為5的樣本,求“從樣本中任選3人,則3人中至少2人使用手機(jī)支付”的概率.

          青年

          中老年

          合計(jì)

          使用手機(jī)支付

          60

          不使用手機(jī)支付

          28

          合計(jì)

          100

          0.05

          0.025

          0.010

          0.005

          0.001

          3.841

          5.024

          6.635

          7.879

          10.828

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)yf(x)在定義域[1,1]上既是奇函數(shù),又是減函數(shù).

          (1)求證:對(duì)任意x1,x2[1,1],有[f(x1)f(x2)]·(x1x2)0;

          (2)f(1a)f(1a2)0,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】通過(guò)隨機(jī)詢問(wèn)100性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下2×2列聯(lián)表:

          總計(jì)

          愛(ài)好

          40

          不愛(ài)好

          25

          總計(jì)

          45

          100


          (1)將題中的2×2列聯(lián)表補(bǔ)充完整;
          (2)能否有99%的把握認(rèn)為斷愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)?請(qǐng)說(shuō)明理由;
          附:K2=

          p(K2≥k0

          0.050

          0.010

          0.001

          k0

          3.841

          6.635

          10.828


          (3)利用分層抽樣的方法從以上愛(ài)好該項(xiàng)運(yùn)動(dòng)的大學(xué)生中抽取6人組建了“運(yùn)動(dòng)達(dá)人社”,現(xiàn)從“運(yùn)動(dòng)達(dá)人設(shè)”中選派3人參加某項(xiàng)校際挑戰(zhàn)賽,記選出3人中的女大學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知奇函數(shù)的定義域?yàn)?/span>,其中為指數(shù)函數(shù)且過(guò)點(diǎn)

          (1)求函數(shù)的解析式;

          (2)判斷函數(shù)的單調(diào)性,并用函數(shù)單調(diào)性定義證明.

          (3)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)a,b∈R,c∈[0,2π),若對(duì)任意實(shí)數(shù)x都有2sin(3x﹣ )=asin(bx+c),定義在區(qū)間[0,3π]上的函數(shù)y=sin2x的圖象與y=cosx的圖象的交點(diǎn)個(gè)數(shù)是d個(gè),則滿足條件的有序?qū)崝?shù)組(a,b,c,d)的組數(shù)為(
          A.7
          B.11
          C.14
          D.28

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】通過(guò)對(duì)某城市一天內(nèi)單次租用共享自行車的時(shí)間分鐘到鐘的人進(jìn)行統(tǒng)計(jì),按照租車時(shí)間, , , , 分組做出頻率分布直方圖,并作出租用時(shí)間和莖葉圖(圖中僅列出了時(shí)間在, 的數(shù)據(jù)).

          (1)求的頻率分布直方圖中的

          (2)從租用時(shí)間在分鐘以上(含分鐘)的人數(shù)中隨機(jī)抽取人,設(shè)隨機(jī)變量表示所抽取的人租用時(shí)間在內(nèi)的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案