【題目】已知函數(shù)f(x)=3mx﹣ ﹣(3+m)lnx,若對任意的m∈(4,5),x1 , x2∈[1,3],恒有(a﹣ln3)m﹣3ln3>|f(x1)﹣f(x2)|成立,則實數(shù)a的取值范圍是 .
【答案】[ ,+∞)
【解析】解:函數(shù)的導(dǎo)數(shù)f′(x)=3m+ ﹣
=
= =
,
∵m∈(4,5),
∴ ∈(
,
),
由f′(x)>0得x> 或x<
,此時函數(shù)單調(diào)遞增,
由f′(x)<0得 <x<
,此時函數(shù)單調(diào)遞減,
∴當(dāng)x∈[1,3]時,函數(shù)f(x)為增函數(shù),
則函數(shù)的最大值為f(3)max=9m﹣ ﹣(3+m)ln3,
函數(shù)的最小值為f(1)min=3m﹣1,
則|f(x1)﹣f(x2)|max=9m﹣ ﹣(3+m)ln3﹣(3m﹣1)=6m+
﹣(3+m)ln3,
則(a﹣ln3)m﹣3ln3>|f(x1)﹣f(x2)|恒成立,
等價為(a﹣ln3)m﹣3ln3>6m+ ﹣(3+m)ln3,
即am>6m+ ,即a>6+
,
∵m∈(4,5),
∴ ∈(
,
),
∴ ∈(
,
),
則6+ ∈(
,
),
則a≥ ,
即實數(shù)a的取值范圍是[ ,+∞),
所以答案是:[ ,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市年
月
日至
日的空氣質(zhì)量指數(shù)趨勢圖,某人隨機選擇
年
月
日至
月
日中的某一天到達該市,并停留
天.
(1)求此人到達當(dāng)日空氣質(zhì)量指數(shù)大于的概率;
(2)設(shè)是此人停留期間空氣質(zhì)量指數(shù)小于
的天數(shù),求
的分布列與數(shù)學(xué)期望;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過點
.
(1)求的值并求函數(shù)
的值域;
(2)若關(guān)于的方程
有實根,求實數(shù)
的取值范圍;
(3)若函數(shù),則是否存在實數(shù)
,使得函數(shù)
的最大值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個五個命題:
①“”是“
”的充要條件
②對于命題,使得
,則
,均有
;
③命題“若,則方程
有實數(shù)根”的逆否命題為:“若方程
沒有實數(shù)根,則
”;
④函數(shù)只有
個零點;
⑤使
是冪函數(shù),且在
上單調(diào)遞減.
其中是真命題的個數(shù)為:
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
過點
,其參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點
為極點,
軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若曲線與
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)在
上存在
滿足
,
,則稱函數(shù)
是在
上的“雙中值函數(shù)”,已知函數(shù)
是
上的“雙中值函數(shù)”,則函數(shù)
的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張經(jīng)營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費用為每月10000元.
(1)把y表示為x的函數(shù);
(2)當(dāng)銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數(shù);
(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R.
(1)當(dāng)a=1時,解不等式f(x)≥5;
(2)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com