【題目】某公司為了預(yù)測(cè)下月產(chǎn)品銷售情況,找出了近7個(gè)月的產(chǎn)品銷售量(單位:萬(wàn)件)的統(tǒng)計(jì)表:
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售量 |
但其中數(shù)據(jù)污損不清,經(jīng)查證,
,
.
(1)請(qǐng)用相關(guān)系數(shù)說明銷售量與月份代碼
有很強(qiáng)的線性相關(guān)關(guān)系;
(2)求關(guān)于
的回歸方程(系數(shù)精確到0.01);
(3)公司經(jīng)營(yíng)期間的廣告宣傳費(fèi)(單位:萬(wàn)元)(
),每件產(chǎn)品的銷售價(jià)為10元,預(yù)測(cè)第8個(gè)月的毛利潤(rùn)能否突破15萬(wàn)元,請(qǐng)說明理由.(毛利潤(rùn)等于銷售金額減去廣告宣傳費(fèi))
參考公式及數(shù)據(jù):,相關(guān)系數(shù)
,當(dāng)
時(shí)認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)關(guān)系,回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為
,
.
【答案】(1)見解析;(2) (3)見解析
【解析】
(1)根據(jù)中條件,計(jì)算相關(guān)系數(shù)的值,即可得出結(jié)論;
(2)根據(jù)題中數(shù)據(jù),計(jì)算出,即可得到回歸方程;
(3)將代入(2)的結(jié)果,結(jié)合題中條件,即可求出結(jié)果.
(1)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得
,
,
,
∴, 因?yàn)?/span>
所以銷售量與月份代碼
有很強(qiáng)的線性相關(guān)關(guān)系.
(2) 由及(Ⅰ)得
所以關(guān)于
的回歸方程為
(3)當(dāng)時(shí),代入回歸方程得
(萬(wàn)件)
第8個(gè)月的毛利潤(rùn)為
,預(yù)測(cè)第8個(gè)月的毛利潤(rùn)不能突破
萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)工廠在某年里連續(xù)10個(gè)月每月產(chǎn)品的總成本(萬(wàn)元)與該月產(chǎn)量
(萬(wàn)件)之間有如下一組數(shù)據(jù):
1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 | |
2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合與
的關(guān)系,請(qǐng)用相關(guān)系數(shù)
加以說明;
(2)①建立月總成本與月產(chǎn)量
之間的回歸方程;②通過建立的
關(guān)于
的回歸方程,估計(jì)某月產(chǎn)量為1.98萬(wàn)件時(shí),產(chǎn)品的總成本為多少萬(wàn)元?(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
,
,
.
②參考公式:相關(guān)系數(shù),
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的運(yùn)動(dòng)方式,小王的微信朋友內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
性別 步數(shù) | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評(píng)定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有X人,超過10000步的有Y人,設(shè)ξ=|X﹣Y|,求E的分布列及數(shù)學(xué)期望.
附:K2,n=a+b+c+d.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè),
①當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
②當(dāng)時(shí),求證:
對(duì)任意
恒成立.
(2)討論的極值點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為
,右焦點(diǎn)為
,過
作垂直于
軸的直線交該橢圓于
,
兩點(diǎn),直線
的斜率為
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的外接圓在
處的切線與橢圓交另一點(diǎn)于
,且
的面積為
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱的側(cè)棱垂直于底面,
,點(diǎn)
分別是
和
的中點(diǎn).
(1)證明:平面
;
(2)設(shè),當(dāng)
為何值時(shí),
平面
,試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為菱形,
為
的中點(diǎn),
.
(1)求證:平面
;
(2)點(diǎn)在線段
上,
,試確定
的值,使
平面
;
(3)若平面
,平面
平面
,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某氣象站統(tǒng)計(jì)了4月份甲、乙兩地的天氣溫度(單位),統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示,
(1)根據(jù)所給莖葉圖利用平均值和方差的知識(shí)分析甲,乙兩地氣溫的穩(wěn)定性;
(2)氣象主管部門要從甲、乙兩地各隨機(jī)抽取一天的天氣溫度,若甲、乙兩地的溫度之和大于或等于,則被稱為“甲、乙兩地往來溫度適宜天氣”,求“甲、乙兩地往來溫度適宜天氣”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)是坐標(biāo)原點(diǎn)的拋物線的焦點(diǎn)
在
軸正半軸上,圓心在直線
上的圓
與
軸相切,且
關(guān)于點(diǎn)
對(duì)稱.
(1)求和
的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線
與
交于
,與
交于
,求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com