【題目】我國南北朝數(shù)學(xué)家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分數(shù)來表示數(shù)值的算法,其理論依據(jù)是:設(shè)實數(shù)的不足近似值和過剩近似值分別為
和
,則
是
的更為精確的近似值.
我們知道,我國早在《周髀算經(jīng)》中就有“周三徑一”的古率記載,《隋書律歷志》有如下記載:“南徐州從事史祖沖之更開密法,以圓徑一億為丈,圓周盈數(shù)三丈一尺四寸一分五厘九毫二秒七忽,肭數(shù)三丈一尺四寸一分五厘九毫二秒六忽,正數(shù)在盈肭二限之間。密率:圓徑一百一十三,圓周三百五十五。約率,圓徑七,周二十二”,這一記錄指出了祖沖之關(guān)于圓周率的兩大貢獻:其一是求得圓周率
;其二是得到
的兩個近似分數(shù)即:約率為22/7,密率為355/113,他算出的
的8位可靠數(shù)字,不但在當時是最精密的圓周率,而且保持世界紀錄一千多年,他對
的研究真可謂“運籌于帷幄之中,決勝于千年之外”,祖沖之是我國古代最有影響的數(shù)學(xué)家之一,莫斯科大學(xué)走廊里有其塑像,1959年10月,原蘇聯(lián)通過“月球3”號衛(wèi)星首次拍下月球背面照片后,就以祖沖之命名一個環(huán)形山,其月面坐標是:東經(jīng)148度,北緯17度.
縱橫古今,關(guān)于值的研究,經(jīng)歷了古代試驗法時期、幾何法時期、分析法時期、蒲豐或然性試驗方法時期、計算機時期,己知
,試以上述
的不足近似值
和過剩近似值
為依據(jù),那么使用兩次“調(diào)日法”后可得
的近似分數(shù)為____________
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當時,解不等式
;
(2)若關(guān)于的不等式
在
上恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB為圓O的直徑,且AB=4,點D為線段AB上一點,且,點C為圓O上一點,且
.點P在圓O所在平面上的正投影為點D,PD=DB.
(1)求證:CD⊥平面PAB;
(2)求直線PC與平面PAB所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:(a>0),過點P(-2,-4)的直線l的參數(shù)方程為
(t為參數(shù)),l與C分別交于M,N.
(1)寫出C的平面直角坐標系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為,直線
過定點P(2,0),斜率為
。當
為何值時,直線
與拋物線:
(1)只有一個公共點;
(2)有兩個公共點;
(3)沒有公共點。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為
,
在橢圓上,橢圓的左頂點為
,左、右焦點分別為
,
的面積是
的面積的
倍.
(1)求橢圓的方程;
(2)直線(
)與橢圓
交于
,
,連接
,
并延長交橢圓
于
,
,連接
,指出
與
之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條規(guī)定:機動車行經(jīng)人行橫道時,應(yīng)當減速慢行;遇到行人正在通過人行橫道,應(yīng)當停車讓行,俗稱“禮讓斑馬線”.下表是某十字路口監(jiān)控設(shè)備所抓拍的6個月內(nèi)駕駛員不“禮讓斑馬線”行為的統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“禮讓斑馬線”駕駛員人數(shù) | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)請根據(jù)表中所給前5個月的數(shù)據(jù),求不“禮讓斑馬線”的駕駛員人數(shù)與月份
之間的回歸直線方程
;
(Ⅱ)若該十字路口某月不“禮讓斑馬線”駕駛員人數(shù)的實際人數(shù)與預(yù)測人數(shù)之差小于5,則稱該十字路口“禮讓斑馬線”情況達到“理想狀態(tài)”.試根據(jù)(Ⅰ)中的回歸直線方程,判斷6月份該十字路口“禮讓斑馬線”情況是否達到“理想狀態(tài)”?
(Ⅲ)若從表中3、4月份分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調(diào)查,求抽取的兩人恰好來自同一月份的概率.
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且
.
(1)判斷并證明在區(qū)間
上的單調(diào)性;
(2)若函數(shù)與函數(shù)
在
上有相同的值域,求
的值;
(3)函數(shù),若對于任意
,總存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象做怎樣的變換可以得到函數(shù)
的圖象;
(3)若方程在
上有兩個不相等的實數(shù)根,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com