日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=lg(x+m)(m∈R);
          (1)當(dāng)m=2時(shí),解不等式
          (2)若f(0)=1,且 在閉區(qū)間[2,3]上有實(shí)數(shù)解,求實(shí)數(shù)λ的范圍;
          (3)如果函數(shù)f(x)的圖像過點(diǎn)(98,2),且不等式f[cos(2nx)]<lg2對(duì)任意n∈N均成立,求實(shí)數(shù)x的取值集合.

          【答案】
          (1)解:函數(shù)f(x)=lg(x+m)(m∈R);

          當(dāng)m=2時(shí),f(x)=lg(x+2)

          那么:不等式 ;即lg( +2)>lg10,

          可得: ,且

          解得:

          ∴不等式的解集為{x| }


          (2)解:∵f(0)=1,可得m=10.

          ∴f(x)=lg(x+10)

          ,即lg(x+10)= 在閉區(qū)間[2,3]上有實(shí)數(shù)解,

          可得λ=lg(x+10)﹣

          令F(x)=lg(x+10)﹣ ,求在閉區(qū)間[2,3]上的值域.

          根據(jù)指數(shù)和對(duì)數(shù)的性質(zhì)可知:F(x)是增函數(shù),

          ∴F(x)在閉區(qū)間[2,3]上的值域?yàn)閇lg12﹣ ,lg13﹣ ]

          故得實(shí)數(shù)λ的范圍是[lg12﹣ ,lg13﹣ ]


          (3)解:∵函數(shù)f(x)的圖像過點(diǎn)(98,2),

          則有:2=lg(98+m)

          ∴m=2.

          故f(x)=lg(2+x)

          那么:不等式f[cos(2nx)]<lg2轉(zhuǎn)化為lg(2+cos(2nx))<lg2

          ,n∈N.

          解得: <x< ,n∈N.

          又∵2+x>0,即x>﹣2,

          ≥﹣2,n∈N.

          解得:k ,

          ∵k∈Z,

          ∴k≥0.

          故得任意n∈N均成立,實(shí)數(shù)x的取值集合為( ),k∈N,n∈N.


          【解析】(1)根據(jù)對(duì)數(shù)的運(yùn)算解不等式即可.(2)根據(jù)f(0)=1,求f(x)的解析式,根據(jù) 在閉區(qū)間[2,3]上有實(shí)數(shù)解,分離λ,可得λ=lg(x+10)﹣ ,令F(x)=lg(x+10)﹣ ,求在閉區(qū)間[2,3]上的值域即為λ的范圍.(3)函數(shù)f(x)的圖像過點(diǎn)(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2nx)]<lg2轉(zhuǎn)化為lg(2+cos(2nx))<lg2轉(zhuǎn)化為 ,求解x,又∵2+x>0,即x>﹣2和n∈N.討論k的范圍可得答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|sinx|(x∈[﹣π,π]),g(x)=x﹣2sinx(x∈[﹣π,π]),設(shè)方程f(f(x))=0,f(g(x))=0,g(g(x))=0的實(shí)根的個(gè)數(shù)分別為m,n,t,則m+n+t=(
          A.9
          B.13
          C.17
          D.21

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xoy 中,直線l的參數(shù)方程為 ,(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)o為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ. (Ⅰ)求圓C在直角坐標(biāo)系中的方程;
          (Ⅱ)若圓C與直線l相切,求實(shí)數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中, ,點(diǎn)D在線段BC上.
          (1)當(dāng)BD=AD時(shí),求 的值;
          (2)若AD是∠A的平分線, ,求△ADC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)M,N為兩個(gè)隨機(jī)事件,給出以下命題: (1.)若M、N為互斥事件,且 ,則 ;
          (2.)若 , , ,則M、N為相互獨(dú)立事件;
          (3.)若 , , ,則M、N為相互獨(dú)立事件;
          (4.)若 , , ,則M、N為相互獨(dú)立事件;
          (5.)若 , ,則M、N為相互獨(dú)立事件;
          其中正確命題的個(gè)數(shù)為(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在Rt△AOB中, , , ,AB邊上的高線為OD,點(diǎn)E位于線段OD上,若 ,則向量 在向量 上的投影為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
          (1)解不等式f(x)≤5;
          (2)若不等式m2﹣m<f(x),x∈R都成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P為函數(shù)y=2lnx的圖像與圓M:(x﹣3)2+y2=r2的公共點(diǎn),且它們?cè)邳c(diǎn)P處有公切線,若二次函數(shù)y=f(x)的圖像經(jīng)過點(diǎn)O,P,M,則y=f(x)的最大值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為得到函數(shù)y=2cos2x﹣ sin2x的圖象,只需將函數(shù)y=2sin2x+1的圖象(
          A.向左平移 個(gè)長(zhǎng)度單位
          B.向右平移 個(gè)長(zhǎng)度單位
          C.向左平移 個(gè)長(zhǎng)度單位
          D.向右平移 個(gè)長(zhǎng)度單位

          查看答案和解析>>

          同步練習(xí)冊(cè)答案