日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,圓形紙片的圓心為O,半徑為6cm,該紙片上的正方形ABCD的中心為OE,FG,H為圓O上的點(diǎn),△ABE,△BCF,△CDG,△ADH分別是以AB,BC,CDDA為底邊的等腰三角形.沿虛線剪開后,分別以ABBC,CDDA為折痕折起△ABE,△BCF,△CDG,△ADH,使得E,FG,H重合得到一個(gè)四棱錐.當(dāng)該四棱錐的側(cè)面積是底面積的2倍時(shí),該四棱錐的外接球的表面積為( )

          A. B. C. D.

          【答案】D

          【解析】

          根據(jù)側(cè)面積與底面積的關(guān)系求出正方形的邊長,進(jìn)而利用外接球的性質(zhì)求出半徑,從而求出外接球的表面積.

          如圖:

          連接于點(diǎn),設(shè)重合交于點(diǎn)

          設(shè)正方形的邊長為,則,

          因?yàn)樵撍睦忮F的側(cè)面積是底面積的2倍,則,解得,

          設(shè)該四棱錐的外接球的球心為,半徑為,

          則有,

          因?yàn)?/span>,所以.

          ,解得,

          外接球的表面積為,故選.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在銳角三角形ABC中,若,且滿足關(guān)系式,則a+c的取值范圍是(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知?jiǎng)訄A過點(diǎn)并且與圓相外切,動圓圓心的軌跡為.

          Ⅰ)求曲線的軌跡方程;

          Ⅱ)過點(diǎn)的直線與軌跡交于、兩點(diǎn),設(shè)直線,設(shè)點(diǎn),直線,求證:直線經(jīng)過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

          在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系中,曲線的參數(shù)方程為: 為參數(shù)).

          (1)求曲線的直角坐標(biāo)方程與曲線的普通方程;

          (2)將曲線經(jīng)過伸縮變換后得到曲線,若, 分別是曲線和曲線上的動點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓過點(diǎn),且離心率為.

          (1)求橢圓的方程;

          (2)過的直線交橢圓,兩點(diǎn),判斷點(diǎn)與以線段為直徑的圓的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中常數(shù)

          1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

          2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若內(nèi)恒成立,則稱為函數(shù)類對稱點(diǎn),當(dāng)時(shí),試問是否存在類對稱點(diǎn),若存在,請至少求出一個(gè)類對稱點(diǎn)的橫坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時(shí),求的極值;

          2)當(dāng)時(shí),討論的單調(diào)性;

          3)若對任意的,,恒有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線,的極坐標(biāo)方程分別為,.

          (1)將直線的參數(shù)方程化為極坐標(biāo)方程,將的極坐標(biāo)方程化為參數(shù)方程;

          (2)當(dāng)時(shí),直線交于,兩點(diǎn),與交于,兩點(diǎn),求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于的不等式,其中.

          1)當(dāng)時(shí),求不等式的解集A;

          2)若,試求不等式的解集B;

          3)設(shè)原不等式的解集為C,記(其中為整數(shù)集),試探究集合M能否為有限集?若能,求出使得集合M中元素個(gè)數(shù)最少的實(shí)數(shù)的所有取值,并用列舉法表示集合M;若不能,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案