【題目】如圖,在四邊形ABCD中,△ABC是邊長為6的正三角形,設(shè) (x,y∈R).
(1)若x=y=1,求| |;
(2)若 =36,
=54,求x,y.
【答案】
(1)解:如圖,
若x=y=1,則 ;
∴BD過AC的中點E,且BD=2BE= ;
即
(2)解:設(shè)∠DBC=θ,則∠DBA=60°﹣θ,設(shè)BD=d;
∴由 =36,
=54得:
;
解得,cos ,d=
;
∴ ;
即84=36x2+36xy+36y2,整理得, ①;
且 ;
∴ =18x﹣18y=18;
∴x﹣y=1②;
①②聯(lián)立得, (舍去),x=
.
【解析】(1)x,y=1時,根據(jù)向量加法的平行四邊形法則,以及等邊三角形的中線也是高線便可求出BD的長度,即求出 的值;(2)可設(shè)BD=d,∠DBC=θ,根據(jù)條件及向量數(shù)量積的計算公式便可得出不等式組
,解該不等式組可求出d的大小,然后對
兩邊平方即可得出
①;再根據(jù)該問的條件可得到方程x﹣y=1②,這樣兩式聯(lián)立即可求出x,y的值.
【考點精析】掌握平面向量的基本定理及其意義是解答本題的根本,需要知道如果、
是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量
,有且只有一對實數(shù)
、
,使
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:x>0,x+ >a;命題q:x0∈R,x02﹣2ax0+1≤0.若¬q為假命題,p∧q為假命題,則求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C:(x﹣3)2+(y﹣4)2=5,A、B是圓C上的兩個動點,AB=2,則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: +
=1(a>b>0)的離心率為
,其中左焦點F(﹣2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點A,B,且線段的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若關(guān)于的不等式
在
上恒成立,求
的取值范圍;
(2)設(shè)函數(shù),若
在
上存在極值,求
的取值范圍,并判斷極值的正負.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+cx(a≠0,a∈R,c∈R),當x=1時,f(x)取得極值﹣2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;
(3)若對任意x1、x2∈[﹣1,1],不等式|f(x1)﹣f(x2)|≤t恒成立,求實數(shù)t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+2ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為﹣1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當x>0時,x2+1<ex .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017重慶二診】已知函數(shù),設(shè)關(guān)于
的方程
有
個不同的實數(shù)解,則
的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com