【題目】在如圖所示的幾何體中,是等邊三角形,四邊形
是等腰梯形,
,
,平面
平面
.
(1)求證:平面
;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)通過面面垂直,結(jié)合,即可推證線面垂直;
(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系;通過求解兩個(gè)平面的法向量即可求得二面角的余弦值.
(1)證明:在等腰梯形中,過點(diǎn)C作
交AB于點(diǎn)E,
設(shè)BC長為1,則,
,
,
,
可得,即
所以,
因?yàn)槊?/span>與面
交線為
,
又平面
,
所以平面
.
(2)過點(diǎn)C作平面
,
以點(diǎn)C為原點(diǎn),,
,
所在的直線分別為x,y,z軸
建立如圖所示的空間直角坐標(biāo)系.
則,
,
,
,
所以,
,
設(shè)平面的法向量為
,
則 ,即
取,則
,
,
得.
取平面的法向量為,
,
所以,
由圖形知該二面角的平面角為銳角,
所以二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),不等式
的解集有且只有一個(gè)元素,設(shè)數(shù)列
的前
項(xiàng)和
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足
,求數(shù)列
的前
項(xiàng)和
.
(3)設(shè)各項(xiàng)均不為0的數(shù)列中,滿足
的正整數(shù)
的個(gè)數(shù)稱為這個(gè)數(shù)列
的變號(hào)數(shù),令
,求數(shù)列
的變號(hào)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在
處的切線方程是
.
(1)求的值;
(2)若函數(shù),討論
的單調(diào)性與極值;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的方程為
,定點(diǎn)
,點(diǎn)
是曲線
上的動(dòng)點(diǎn),
為
的中點(diǎn).
(1)求點(diǎn)的軌跡
的直角坐標(biāo)方程;
(2)已知直線與
軸的交點(diǎn)為
,與曲線
的交點(diǎn)為
,若
的中點(diǎn)為
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 6 | 7 | 8 | 10 |
(1)求關(guān)于
的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,已知
,
,
,
.
是線段
的中點(diǎn).
(1)求直線與平面
所成角的正弦值;
(2)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 下列結(jié)論錯(cuò)誤的是
A. 命題:“若,則
”的逆否命題是“若
,則
”
B. “”是“
”的充分不必要條件
C. 命題:“,
”的否定是“
,
”
D. 若“”為假命題,則
均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長度為的線段
的兩個(gè)端點(diǎn)
分別在
軸和
軸上運(yùn)動(dòng),動(dòng)點(diǎn)
滿足
,設(shè)動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點(diǎn),且斜率不為零的直線
與曲線
交于兩點(diǎn)
,在
軸上是否存在定點(diǎn)
,使得直線
與
的斜率之積為常數(shù)?若存在,求出定點(diǎn)
的坐標(biāo)以及此常數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,且橢圓上存在一點(diǎn)
,滿足
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓右焦點(diǎn)
的直線
與橢圓
交于不同的兩點(diǎn)
,求
的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com