【題目】已知橢圓:
的離心率為
,點
在橢圓上.不過原點的直線
與橢圓交于
兩點,且
(
為坐標(biāo)原點).
(1)求橢圓的方程;
(2)試判斷是否為定值?若是,求出這個值;若不是,請說明理由.
【答案】(Ⅰ)(Ⅱ)
【解析】分析:(Ⅰ)根據(jù)題意,列出方程組求得的值,即可求解橢圓的方程;
(Ⅱ)當(dāng)直線的斜率存在且不為
時,設(shè)方程為
,代入橢圓的方程,求得
和
,進(jìn)而轉(zhuǎn)化得到
的表達(dá)式,進(jìn)而得到定值.
詳解:(Ⅰ)∵橢圓的離心率
,又
,
∴,∴
.
又點在橢圓上,∴
,
即,∴
,則
,
∴橢圓的方程為
.
(Ⅱ)當(dāng)直線的斜率存在且不為0時,
設(shè)其方程為,
∵分別為橢圓上的兩點,且
,
即,∴直線
的方程為
.
設(shè),
把代入橢圓
:
,
得,∴
,
同理,∴
,
∴
當(dāng)直線中的一條直線的斜率不存在時,則另一條直線的斜率為0,
此時.
綜上所述,為定值
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①若某商品的銷售量(件)關(guān)于銷售價格
(元/件)的線性回歸方程為
,當(dāng)銷售價格為10元時,銷售量一定為300件;
②線性回歸直線一定過樣本點中心
;
③若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1;
④在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān);
⑤在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對于預(yù)報變量變化的貢獻(xiàn)率,
越接近于1,表示回歸的效果越好;
其中正確的結(jié)論有幾個( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為
.設(shè)l1與l2的交點為P,當(dāng)k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ) =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動有興趣的占,而男生有10人表示對冰球運(yùn)動沒有興趣額.
(1)完成列聯(lián)表,并回答能否有
的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)若將頻率視為概率,現(xiàn)再從該校一年級全體學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求
的分布列,期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)當(dāng)a>1時,求使f(x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】3名男生和3名女生共6人站成一排,若男生甲不站兩端,且不與男生乙相鄰,3名女生有且只有2名女生相鄰,則不同排法的種數(shù)是_____.(用數(shù)字作答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com