【題目】如圖,建立平面直角坐標系,
軸在地平面上,
軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程
表示的曲線上,其中
與發(fā)射方向有關(guān).炮彈的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)若規(guī)定炮彈的射程不小于6千米,設(shè)在此條件下炮彈射出的最大高度為,求
的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】若是一個集合,
是一個以
的某些子集為元素的集合,且滿足:(1)
屬于
,
屬于
;(2)
中任意多個元素的并集屬于
;(3)
中任意多個元素的交集屬于
,則稱
是集合
上的一個拓補.已知集合
,對于下面給出的四個集合
:
①②
③④
其中是集合上的拓補的集合
的序號是______.(寫出所有的拓補的集合
的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,離心率為
,直線l經(jīng)過
與橢圓交于P,Q兩點.當
與y軸的交點是線段
的中點時,
.
(1)求橢圓的方程;
(2)設(shè)直線l不垂直于x軸,若滿足
,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如題所示:扇形ABC是一塊半徑為2千米,圓心角為60°的風景區(qū),P點在弧BC上,現(xiàn)欲在風景區(qū)中規(guī)劃三條三條商業(yè)街道PQ、QR、RP,要求街道PQ與AB垂直,街道PR與AC垂直,直線PQ表示第三條街道。
(1)如果P位于弧BC的中點,求三條街道的總長度;
(2)由于環(huán)境的原因,三條街道PQ、PR、QR每年能產(chǎn)生的經(jīng)濟效益分別為每千米300萬元、200萬元及400萬元,問:這三條街道每年能產(chǎn)生的經(jīng)濟總效益最高為多少?(精確到1萬元)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論中:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.
其中正確的有____________(把所有正確的序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)關(guān)于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數(shù)
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】符合以下性質(zhì)的函數(shù)稱為“函數(shù)”:①定義域為
,②
是奇函數(shù),③
(常數(shù)
),④
在
上單調(diào)遞增,⑤對任意一個小于
的正數(shù)
,至少存在一個自變量
,使
.下列四個函數(shù)中
,
,
,
中“
函數(shù)”的個數(shù)為( )
A.個B.
個C.
個D.
個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:
①函數(shù)的圖象關(guān)于
軸對稱的充要條件是
,
;
②已知是等差數(shù)列
的前
項和,若
,則
;
③函數(shù)與函數(shù)
的圖象關(guān)于直線
對稱;
④對于任意兩條異面直線,都存在無窮多個平面與這兩條異面直線所成的角相等.
其中正確的命題有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在極坐標系中,O為極點,點在曲線
上,直線l過點
且與
垂直,垂足為P.
(1)當時,求
及l的極坐標方程;
(2)當M在C上運動且P在線段OM上時,求P點軌跡的極坐標方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com