日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知邊長為2的菱形ABCD中,∠BCD=60°,E為DC的中點(diǎn),如圖1所示,將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如圖2所示.
          (Ⅰ)求證:△PAB為直角三角形;
          (Ⅱ)求二面角A﹣PD﹣E的余弦值.

          【答案】證明:(Ⅰ)∵邊長為2的菱形ABCD中,∠BCD=60°,E為DC的中點(diǎn),如圖1所示, ∴BE⊥DC,AB∥CD,∴AB⊥BE,∴∠ABE=90°,
          ∵將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如圖2所示.
          在翻折過程中,∠ABE=90°不變,
          ∴在△ABP中,∠ABP=90°,
          ∴△PAB為直角三角形.
          解:(Ⅱ)由(Ⅰ)得∠BED=∠ABE=90°,∴DE⊥BE,
          以E為原點(diǎn),ED為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,
          A(2, ,0),P(0,0,1),D(1,0,0),E(0,0,0),
          =(﹣1,0,1), =(1, ,0), =(0,0,1), =(1,0,0),
          設(shè)平面ADP的法向量 =(x,y,z),
          ,取x= ,得 =( ),
          平面PDE的法向量 =(1,0,0),
          設(shè)二面角A﹣PD﹣E的平面角為θ,
          則cosθ= = = ,
          ∴二面角A﹣PD﹣E的余弦值為

          【解析】(Ⅰ)推導(dǎo)出BE⊥DC,AB∥CD,從而AB⊥BE,進(jìn)而∠ABE=90°,將△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,在翻折過程中,∠ABE=90°不變,由此能證明△PAB為直角三角形.(Ⅱ)以E為原點(diǎn),ED為x軸,EB為y軸,EP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣PD﹣E的余弦值.
          【考點(diǎn)精析】利用直線與平面垂直的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知垂直于同一個平面的兩條直線平行.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若1

          A. logab>logba B. |logab+logba|>2

          C. (logba)2<1 D. |logab|+|logba|>|logab+logba|

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線

          (1)求曲線在點(diǎn)處的切線方程;

          (2)求過點(diǎn)的曲線的切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)

          (1)求的單調(diào)區(qū)間;

          (2)求函數(shù)上的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

          (Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

          (Ⅱ)若函數(shù)無零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x+2|+|x+a|(a∈R).
          (Ⅰ)若a=5,求函數(shù)f(x)的最小值,并寫出此時x的取值集合;
          (Ⅱ)若f(x)≥3恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了了解甲、乙兩名同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對他們的次數(shù)學(xué)測試成績(滿分分)進(jìn)行統(tǒng)計(jì),作出如下的莖葉圖,其中處的數(shù)字模糊不清,已知甲同學(xué)成績的中位數(shù)是,乙同學(xué)成績的平均分是.

          (1)求的值;

          (2)現(xiàn)從成績在之間的試卷中隨機(jī)抽取兩份進(jìn)行分析,求恰抽到一份甲同學(xué)試卷的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: (a>b>0)的離心率為 ,且過點(diǎn)M(4,1). (Ⅰ)求橢圓C的方程;
          (Ⅱ)若直線l:y=x+m(m≠﹣3)與橢圓C交于P,Q兩點(diǎn),記直線MP,MQ的斜率分別為k1 , k2 , 試探究k1+k2是否為定值.若是,請求出該定值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市環(huán)保部門對市中心每天的環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時刻(時)的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且.若用每天的最大值為當(dāng)天的綜合污染指數(shù),并記作

          1)令,,求的取值范圍;

          2)求的表達(dá)式,并規(guī)定當(dāng)時為綜合污染指數(shù)不超標(biāo),求當(dāng)在什么范圍內(nèi)時,該市市中心的綜合污染指數(shù)不超標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案