如圖,在棱長為1的正方體中.
(1)求異面直線與
所成的角;
(2)求證平面⊥平面
.
(1)(2)先證
即可得證.
解析試題分析:
(1)如圖,∥
,
則就是異面直線
與
所成的角.
連接,在
中,
,則
,
因此異面直線與
所成的角為
.
(2) 由正方體的性質(zhì)可知 , 故
,
又 正方形中,
,
∴
;
又 , ∴ 平面
.
考點(diǎn):向量語言表述面面的垂直、平行關(guān)系;用空間向量求直線間的夾角、距離.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是向量語言表述直線的垂直關(guān)系,用空間向量求直線間的夾角,其中解法一(幾
何法)的關(guān)鍵是熟練掌握空間線面關(guān)系的判定、性質(zhì)及相互轉(zhuǎn)換;解法二(向量法)的關(guān)鍵是建立恰當(dāng)?shù)?br />空間坐標(biāo)系,將空間線面關(guān)系問題轉(zhuǎn)化為向量夾角問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△中,
,
,
,在三角形內(nèi)挖去一個(gè)半圓(圓心
在邊
上,半圓與
、
分別相切于點(diǎn)
、
,與
交于點(diǎn)
),將△
繞直線
旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體。
(1)求該幾何體中間一個(gè)空心球的表面積的大;
(2)求圖中陰影部分繞直線旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,
,
,
,
,
,
和
分別是
和
的中點(diǎn).
(1)求證: 底面
;
(2)求證:平面平面
;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(Ⅰ)求此幾何體的體積;
(Ⅱ)求異面直線與
所成角的余弦值;
(Ⅲ)探究在上是否存在點(diǎn)Q,使得
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知圓錐的軸截面ABC是邊長為的正三角形,O是底面圓心.
(1)求圓錐的表面積;
(2)經(jīng)過圓錐的高的中點(diǎn)
作平行于圓錐底面的截面,求截得的圓臺(tái)的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個(gè)底邊長為8、高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個(gè)底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
正四棱柱ABCD-A1B1C1D1的底面邊長是,側(cè)棱長是3,點(diǎn)E、F分別在BB1、DD1上,且AE⊥A1B,AF⊥A1D.
(1)求證:A1C⊥面AEF;
(2)求截面AEF與底面ABCD所成二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題9分)如圖是一個(gè)空間幾何體的三視圖,其正視圖與側(cè)視圖是邊長為4cm的正三角形、俯視圖中正方形的邊長為4cm,
(1)畫出這個(gè)幾何體的直觀圖(不用寫作圖步驟);
(2)請(qǐng)寫出這個(gè)幾何體的名稱,并指出它的高是多少;
(3)求出這個(gè)幾何體的表面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com