【題目】已知定義在實數(shù)集
上的函數(shù),把方程
稱為函數(shù)
的特征方程,特征方程的兩個實根
,
稱為
的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)求表達式;
(3)把函數(shù),
的最大值記作
、最小值記作
,令
,若
恒成立,求
的取值范圍.
【答案】(1)當時,函數(shù)
為奇函數(shù):當
時,函數(shù)
為非奇非偶函數(shù)(2)
(3)
【解析】
(1)分和
討論即可;
(2)將表達式通分,再利用韋達定理代入即可;
(3)先求出在
上的最值,再分析函數(shù)的單調(diào)性,求出
,然后分離參數(shù),求出參數(shù)的范圍.
(1)當時,
,
所以,即
為奇函數(shù);
當時,因
,
,
所以,
,
所以不是奇函數(shù)也不是偶函數(shù).
(2)由題意,方程的兩個實根
、
,
即方程的兩個實根為
、
,
,
∴,
,
,
∴
(3)由,則
,
由(2)知方程的兩個實根為
、
,
則當時,
恒成立,所以
,恒成立
∴函數(shù)在
上是單調(diào)遞增,
∴,
由恒成立,即
恒成立,
∴恒成立,又
,
,則
,
∴,
故的取值范圍為
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
()當
時,求曲線
在點
處的切線方程.
()如果函數(shù)
在
上單調(diào)遞減,求
的取值范圍.
()當
時,討論函數(shù)
零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學團委組織了“紀念抗日戰(zhàn)爭勝利73周年”的知識競賽,從參加競賽的學生中抽出60名學生,將其成績(均為整數(shù))分成六段,
,…,
后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四組的頻率,并補全這個頻率分布直方圖;
(2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形CDEF是正方形,四邊形ABCD為直角梯形,∠ADC=90°,AB∥DC,平面CDEF⊥平面ABCD,AB=ADCD=a,M在FB上,且BD∥平面ECM.
(1)求證:M為BF中點;
(2)求證:平面BCF⊥平面EMC;
(3)求直線CD與平面ECM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資160萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資30萬元,由前期市場調(diào)研可知:甲城市收益P與投入單位:萬元
滿足
,乙城市收益Q與投入
單位:萬元
滿足
,設甲城市的投入為
單位:萬元
,兩個城市的總收益為
單位:萬元
.
(1)寫出兩個城市的總收益萬元
關于甲城市的投入
萬元
的函數(shù)解析式,并求出當甲城市投資72萬元時公司的總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù))分成,
,
,
,
,
六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分數(shù)內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試成績的中位數(shù);
(3)若從第1組和第6組兩組學生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市舉行了一次初一學生調(diào)研考試,為了解本次考試學生的數(shù)學學科成績情況,從中抽取部分學生的分數(shù)(滿分為100分,得分取正整數(shù),抽取學生的分數(shù)均在之內(nèi))作為樣本(樣本容量
)進行統(tǒng)計,按照
的分組方法作出頻率分布直方圖,并作出了樣本分數(shù)的莖葉圖(莖葉圖中僅列出了得分在
的數(shù)據(jù)].
(Ⅰ)求頻率分布直方圖中的的值,并估計學生分數(shù)的中位數(shù);
(Ⅱ)字在選取的樣本中,從成績在80分以上(含80分)的學生中隨機抽取2名學生,求所抽取的2名學生中恰有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列中,a1=2,a3+2是a2和a4的等差中項.
(1)求數(shù)列的通項公式;
(2)記=
log2
,求數(shù)列
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下對各事件發(fā)生的概率判斷正確的是( )
A.甲、乙兩人玩剪刀、石頭、布的游戲,則玩一局甲不輸?shù)母怕适?/span>
B.從1名男同學和2名女同學中任選2人參加社區(qū)服務,則選中一男一女同學的概率為
C.將一個質(zhì)地均勻的正方體骰子(每個面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是6的概率是
D.從三件正品、一件次品中隨機取出兩件,則取出的產(chǎn)品全是正品的概率是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com