【題目】如圖,已知邊長為2的正三角形ABE所在的平面與菱形ABCD所在的平面垂直,且,點(diǎn)F是BC上一點(diǎn),且
.
(1)當(dāng)時,證明:
;
(2)是否存在一個常數(shù)k,使得三棱錐的體積等于四棱錐
的體積的
,若存在,求出k的值;若不存在,說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)
有極值,且函數(shù)
的極值點(diǎn)是
的極值點(diǎn),其中
是自然對數(shù)的底數(shù).(極值點(diǎn)是指函數(shù)取得極值時對應(yīng)的自變量的值)
(1)求關(guān)于
的函數(shù)關(guān)系式;
(2)當(dāng)時,若函數(shù)
的最小值為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)(c≠0),其圖象的對稱中心為(
,
),現(xiàn)已知f(x)
,數(shù)列{an}的通項(xiàng)公式為an=f(
)(n∈N+),則此數(shù)列前2020項(xiàng)的和為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若
,使得
成立,求實(shí)數(shù)a的取值范圍;
(3)若方程有兩個不相等的實(shí)數(shù)根
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買2臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元.在機(jī)器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺機(jī)器更換的易損零件數(shù)的頻率代替1臺機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機(jī)器三年內(nèi)共需更換的易損零件數(shù),
表示購買2臺機(jī)器的同時購買的易損零件數(shù).
(Ⅰ)求的分布列;
(Ⅱ)若要求,確定
的最小值;
(Ⅲ)以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在與
之中選其一,應(yīng)選用哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)在區(qū)間
上存在零點(diǎn);
②要得到函數(shù)的圖象,只需將函數(shù)
的圖象向左平移
個單位;
③若,則函數(shù)
的值城為
;
④“”是“函數(shù)
在定義域上是奇函數(shù)”的充分不必要條件;
⑤已知為等差數(shù)列,若
,且它的前
項(xiàng)和
有最大值,那么當(dāng)
取得最小正值時,
.
其中正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過點(diǎn)
作傾斜角為
的直線
,以原點(diǎn)
為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,將曲線
上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線
,直線
與曲線
交于不同的兩點(diǎn)
.
(1)求直線的參數(shù)方程和曲線
的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在直角中,
為直角,
,
,
分別為
,
的中點(diǎn),將
沿
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,連接
,
,
為
的中點(diǎn).
(Ⅰ)證明:面
;
(Ⅱ)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)
,點(diǎn)
在圓
上運(yùn)動,
的垂直平分線交
于點(diǎn)
.
(1)求證:為定值及動點(diǎn)
的軌跡
的方程;
(2)不在軸上的
點(diǎn)為
上任意一點(diǎn),
與
關(guān)于原點(diǎn)
對稱,直線
交
于另外一點(diǎn)
.求證:直線
與直線
的斜率的乘積為定值,并求出該定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com