日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)f(x)=x2cosx在 的圖象大致是(
          A.
          B.
          C.
          D.

          【答案】B
          【解析】解:函數(shù)f(x)=x2cosx在 ,滿足f(﹣x)=f(x),所以函數(shù)是偶函數(shù),排除選項A,C;

          當(dāng)x∈(0, )時,f′(x)=2xcosx﹣x2sinx,令2xcosx﹣x2sinx=0,可得xtanx=2,方程的解x ,即函數(shù)的極大值點x ,排除D,

          故選:B.

          【考點精析】認真審題,首先需要了解函數(shù)的圖象(函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應(yīng)的函數(shù)值),還要掌握函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱臺上、下底面分別是邊長為3和6的正方形,,且
          底面,點,分別在棱上.
          (1)若是的中點,證明:;
          (2若//平面,二面角的余弦值為,求四面體的體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線C: =1(b>a>0)的右焦點為F,O為坐標原點,若存在直線l過點F交雙曲線C的右支于A,B兩點,使 =0,則雙曲線離心率的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=(x﹣a)ex , a∈R. (Ⅰ)當(dāng)a=1時,試求f(x)的單調(diào)增區(qū)間;
          (Ⅱ)試求f(x)在[1,2]上的最大值;
          (Ⅲ)當(dāng)a=1時,求證:對于x∈[﹣5,+∞), 恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分別為邊AC,AB的中點,點F,G分別為線段CD,BE的中點.將△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.點Q為線段A1B上的一點,如圖2.
          (Ⅰ)求證:A1F⊥BE;
          (Ⅱ)線段A1B上是否存在點Q使得FQ∥平面A1DE?若存在,求出A1Q的長,若不存在,請說明理由;
          (Ⅲ)當(dāng) 時,求直線GQ與平面A1DE所成角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)試比較f(﹣1)與f(a)的大;
          (Ⅱ)當(dāng)a≥﹣1時,若函數(shù)f(x)的圖象和x軸圍成一個三角形,則實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直線l與曲線C相交于A、B兩點,O為坐標原點.
          (Ⅰ)若 ,求證:直線l恒過定點,并求出定點坐標;
          (Ⅱ)若直線l與曲線C1相切,M(1,0),求 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且ctanC= (acosB+bcosA).
          (1)求角C;
          (2)若c=2 ,求△ABC面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案