【題目】若函數(shù)f(x)= 是奇函數(shù),則使f(x)>3成立的x的取值范圍為( )
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(1,+∞)
【答案】C
【解析】.f(-x)= =
,由f(-x)=-f(x)得
=-
,即1-a·2x=-2x+a,化簡得a·(1+2x)=1+2x , 所以a=1,f(x)=
.由f(x)>3得0<x<1.
故答案為:C.由f(x)為奇函數(shù),根據(jù)奇函數(shù)的定義可求a,代入即可求解不等式.①如果函數(shù)f(x)的定義域關(guān)于原點對稱,且定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù),其圖象特點是關(guān)于(0,0)對稱.②如果函數(shù)f(x)的定義域關(guān)于原點對稱,且定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù),其圖象特點是關(guān)于y軸對稱.
科目:高中數(shù)學 來源: 題型:
【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實,黃實,利用2×勾×股+(股﹣勾)2=4×朱實+黃實=弦實,化簡,得勾2+股2=弦2 , 設勾股中勾股比為1: ,若向弦圖內(nèi)隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A.866
B.500
C.300
D.134
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系下,知圓O:ρ=cosθ+sinθ和直線 .
(1)求圓O與直線l的直角坐標方程;
(2)當θ∈(0,π)時,求圓O和直線l的公共點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 :
的離心率為
,且以兩焦點為直徑的圓的內(nèi)接正方形面積為2.
(1)求橢圓 的標準方程;
(2)若直線 :
與橢圓
相交于
,
兩點,在
軸上是否存在點
,使直線
與
的斜率之和
為定值?若存在,求出點
坐標及該定值,若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a·2x+b·3x , 其中常數(shù)a,b滿足ab≠0.
(1)若ab>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若ab<0,求f(x+1)>f(x)時x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體 的棱長為1,
分別是棱
的中點,過
的平面與棱
分別交于點
.設
,
.
①四邊形 一定是菱形;②
平面
;③四邊形
的面積
在區(qū)間
上具有單調(diào)性;④四棱錐
的體積為定值.
以上結(jié)論正確的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線 的焦點為
,準線為
,點
在拋物線
上,已知以點
為圓心,
為半徑的圓
交
于
兩點.
(Ⅰ)若 ,
的面積為4,求拋物線
的方程;
(Ⅱ)若 三點在同一條直線
上,直線
與
平行,且
與拋物線
只有一個公共點,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com