【題目】下列判斷錯(cuò)誤的是( )
A.是
為可導(dǎo)函數(shù)
的極值點(diǎn)的必要不充分條件
B.命題“”的否定是
C.命題“若,則
”的逆否命題是“若
,則
或
”
D.若,則方程
有實(shí)數(shù)根的逆命題是假命題
【答案】C
【解析】
根據(jù)必要不充分條件的判斷方法,即可得出A正確;寫出原命題的否定命題,即可判斷B;寫出原命題的逆否命題,即可判斷C;寫出原命題的逆命題,即可判斷D.
對(duì)于A,是
為可導(dǎo)函數(shù)
的極值點(diǎn)的必要不充分條件,故A正確;
對(duì)于B,命題“”的否定是
,故B正確;
對(duì)于C,命題“若,則
”的逆否命題是“若
,則
或
”,故C錯(cuò)誤;
對(duì)于D,命題“若,則方程
有實(shí)數(shù)根”的逆命題是
“若方程有實(shí)數(shù)根,則
”
當(dāng)方程有實(shí)數(shù)根時(shí),
,即
,
所以命題“若,則方程
有實(shí)數(shù)根”的逆命題為假命題,故D正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)
恰好有兩個(gè)零點(diǎn),則實(shí)數(shù)
等于(
為自然對(duì)數(shù)的底數(shù))( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率為1的直線與拋物線C交于A、B兩點(diǎn),若在以線段AB為直徑的圓上存在兩點(diǎn)M、N,在直線:x+y+a=0上存在一點(diǎn)Q,使得∠MQN=90°,則實(shí)數(shù)a的取值范圍為( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
.
(1)寫出直線的普通方程及曲線
的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn)
,直線
過(guò)點(diǎn)
且曲線
相交于
,
兩點(diǎn),設(shè)線段
的中點(diǎn)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對(duì)象,如下表所示(
(噸)為該商品進(jìn)貨量,
(天)為銷售天數(shù)):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于
的線性回歸方程
;
(Ⅱ)在該商品進(jìn)貨量(噸)不超過(guò)
(噸)的前提下任取兩個(gè)值,求該商品進(jìn)貨量
(噸)恰有一個(gè)值不超過(guò)
(噸)的概率.
參考公式和數(shù)據(jù):,
.
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)動(dòng)圓P(圓心為P)經(jīng)過(guò)定點(diǎn)(0,2),被x軸截得的弦長(zhǎng)為4,P的軌跡為曲線C
(1) 求C的方程
(2) 設(shè)不經(jīng)過(guò)坐標(biāo)原點(diǎn)O的直線l與C交于A、B兩點(diǎn),O在以線段AB為直徑的圓上,求證:直線l經(jīng)過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
1(a>b>0)的離心率為
,以橢圓
的右頂點(diǎn)與下頂點(diǎn)為直徑端點(diǎn)的圓的面積為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),動(dòng)直線
與橢圓交于
軸同一側(cè)的
兩點(diǎn),且滿足
,試問(wèn)直線
是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出此定點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線關(guān)于
軸對(duì)稱,且經(jīng)過(guò)點(diǎn)
.
(1)求拋物線的標(biāo)準(zhǔn)方程及其準(zhǔn)線方程;
(2)設(shè)為原點(diǎn),過(guò)拋物線
的焦點(diǎn)
作斜率不為0的直線
交拋物線
于兩點(diǎn)
、
,拋物線的準(zhǔn)線分別交直線
、
于點(diǎn)
和點(diǎn)
,求證:以
為直徑的圓經(jīng)過(guò)
軸上的兩個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某二手交易市場(chǎng)對(duì)某型號(hào)的二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù)x | 2 | 4 | 6 | 8 | 10 |
銷售價(jià)格y | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關(guān)于x的回歸直線方程.
(參考公式:,
)
(2)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為ω=0.05x2﹣1.75x+17.2萬(wàn)元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)x為何值時(shí),銷售一輛該型號(hào)汽車所獲得的利潤(rùn)z最大?(利潤(rùn)=銷售價(jià)格﹣收購(gòu)價(jià)格)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com