日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了16月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

          日期

          1月10日

          2月10日

          3月10日

          4月10日

          5月10日

          6月10日

          晝夜溫差

          10

          11

          13

          12

          8

          6

          就診人數(shù)(個(gè))

          22

          25

          29

          26

          16

          12

          該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          (Ⅰ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x

          (Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.

          附:(參考數(shù)據(jù)

          【答案】(1);(2)該小組所得線性回歸方程是理想的.

          【解析】分析:(1)先求均值,代入公式,根據(jù),(2)根據(jù)線性回歸方程得到的估計(jì)數(shù)據(jù),再與所選出的檢驗(yàn)數(shù)據(jù)的作差,與2比較,根據(jù)結(jié)果作判斷.

          詳解:(1)由數(shù)據(jù)求得=11,=24,

          由公式求得b,

          再由ab=-

          y關(guān)于x的線性回歸方程為x

          (2)當(dāng)x=10時(shí),,|-22|<2;

          同樣,當(dāng)x=6時(shí),,|-12|<2,

          所以,該小組所得線性回歸方程是理想的.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】0,1,2,3,4五個(gè)數(shù)字組成五位數(shù).

          (1)求沒有重復(fù)數(shù)字的五位數(shù)的個(gè)數(shù);

          (2)求沒有重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

          (Ⅱ)若對任意的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;

          (Ⅲ)若,的最大值是,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)F為橢圓 的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線 與橢圓E有且僅有一個(gè)交點(diǎn)M. (Ⅰ)求橢圓E的方程;
          (Ⅱ)設(shè)直線 與y軸交于P,過點(diǎn)P的直線與橢圓E交于兩不同點(diǎn)A,B,若λ|PM|2=|PA||PB|,求實(shí)數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

          (2)若函數(shù)上存在兩個(gè)極值點(diǎn),且,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動點(diǎn),過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P. (Ⅰ)求點(diǎn)P的軌跡C的方程;
          (Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線過點(diǎn)且與直線平行,直線過點(diǎn)且與直線垂直.

          Ⅰ)求直線,的方程.

          若圓,同時(shí)相切,求圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中,AB=1,AD=2,動點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高0.02萬元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為0.8萬元.

          (1)若學(xué)生宿舍建筑為層樓時(shí),該樓房綜合費(fèi)用為萬元,綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),寫出的表達(dá)式;

          (2)為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬元?

          【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時(shí)平均綜合費(fèi)用為每平方米萬元

          【解析】

          由已知求出第層樓房每平方米建筑費(fèi)用為萬元,得到第層樓房建筑費(fèi)用,由樓房每升高一層,整層樓建筑費(fèi)用提高萬元,然后利用等差數(shù)列前項(xiàng)和求建筑層樓時(shí)的綜合費(fèi)用;

          設(shè)樓房每平方米的平均綜合費(fèi)用為,則,然后利用基本不等式求最值.

          解:由建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬元,

          且樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,

          可得建筑第1層樓房每平方米建筑費(fèi)用為:萬元.

          建筑第1層樓房建筑費(fèi)用為:萬元

          樓房每升高一層,整層樓建筑費(fèi)用提高:萬元

          建筑第x層樓時(shí),該樓房綜合費(fèi)用為:

          ;

          設(shè)該樓房每平方米的平均綜合費(fèi)用為

          則:,

          當(dāng)且僅當(dāng),即時(shí),上式等號成立.

          學(xué)校應(yīng)把樓層建成10層,此時(shí)平均綜合費(fèi)用為每平方米萬元.

          【點(diǎn)睛】

          本題考查簡單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項(xiàng)和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.

          型】解答
          結(jié)束】
          20

          【題目】已知

          (1)求函數(shù)的最小正周期和對稱軸方程;

          (2)若,求的值域.

          查看答案和解析>>

          同步練習(xí)冊答案