【題目】已知直線過點(diǎn)
且與直線
平行,直線
過點(diǎn)
且與直線
垂直.
(Ⅰ)求直線,
的方程.
(Ⅱ)若圓與
,
,
同時(shí)相切,求圓
的方程.
【答案】(1);(2)與
,
,
都相切的圓的方程為
或
.
【解析】分析:(Ⅰ)由直線與直線
平行,可設(shè)直線
,因?yàn)檫^點(diǎn)
,將其坐標(biāo)代入方程
中可求得
,進(jìn)而得直線
的方程為
。由直線
與直線
垂直,設(shè)直線
,由直線
經(jīng)過
,將其坐標(biāo)代入可求得
的方程為
。(Ⅱ)將方程聯(lián)立,求直線
與
,
與
的交點(diǎn)分別為
,
。因?yàn)橹本
與直線
平行,都與直線
垂直,又因?yàn)閳A
與
,
,
同時(shí)相切, 所以圓心坐標(biāo)為
或
。由點(diǎn)
到
的距離
,即為半徑
。由圓的標(biāo)準(zhǔn)方程可得圓的方程為
或
。
詳解:()設(shè)
,將
代入得
,
,
故,
設(shè),將
代入得
,
故.
()
聯(lián)立,解得
,
,
聯(lián)立,解得
,
,
所以圓心坐標(biāo)為或
.
又到
的距離
,
∴.
故與,
,
都相切的圓的方程為
或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且
平面
.
(1)求證:;
(2)若圓柱的體積
,
①求三棱錐A1﹣APB的體積.
②在線段AP上是否存在一點(diǎn)M,使異面直線OM與所成角的余弦值為
?若存在,請(qǐng)指出M的位置,并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱臺(tái)ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2. (Ⅰ)若M為CD中點(diǎn),求證:AM⊥平面AA1B1B;
(Ⅱ)求直線DD1與平面A1BD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=
x+
;
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.
附:(參考數(shù)據(jù)
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣aex﹣e2x(a∈R,e是自然對(duì)數(shù)的底數(shù)). (Ⅰ)若f(x)≤0對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若方程x﹣aex=0有兩個(gè)不同的實(shí)數(shù)解x1 , x2 , 求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的標(biāo)準(zhǔn)方程為
,點(diǎn)
.
(Ⅰ)經(jīng)過點(diǎn)且傾斜角為
的直線
與橢圓
交于
、
兩點(diǎn),求
.
(Ⅱ)問是否存在直線與橢圓交于兩點(diǎn)
、
且
,若存在,求出直線
斜率的取值范圍;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓與
軸的左右交點(diǎn)分別為
,與
軸正半軸的交點(diǎn)為
.
(1)若直線過點(diǎn)
并且與圓
相切,求直線
的方程;
(2)若點(diǎn)是圓
上第一象限內(nèi)的點(diǎn),直線
分別與
軸交于點(diǎn)
,點(diǎn)
是線段
的中點(diǎn),直線
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,VA 垂直于⊙O所在的平面,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),M,N分別為VA,VC的中點(diǎn),則下列結(jié)論正確的是( )
A. MN∥AB B. MN與BC所成的角為45°
C. OC⊥平面VAC D. 平面VAC⊥平面VBC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像是由函數(shù)
的圖像經(jīng)如下變換得到:先將
圖像上所有點(diǎn)的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),再將所得到的圖像向右平移
個(gè)單位長度.
(Ⅰ)求函數(shù)的解析式,并求其圖像的對(duì)稱軸方程;
(Ⅱ)已知關(guān)于的方程
在
內(nèi)有兩個(gè)不同的解
.
(1)求實(shí)數(shù)m的取值范圍;
(2)證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com