(8分)
已知四邊形

是空間四邊形,

分別是邊

的中點,求證:四邊形

是平行四邊形。

證明 由題意知EH

BD FG

BD ∴EH

FG
∴四邊形

是平行四邊形
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,四棱錐

的底面

為菱形,

平面

,

,

分別為

的中點,

.

(Ⅰ)求證:

平面

.
(Ⅱ)求三棱錐

的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題12分)
如圖,在三棱柱

中,已知


,

側(cè)面

。

(1)求直線

與底面ABC所成角正切值;
(2)在棱

(不包含端點

上確定一點

的位置,使得

(要求說明理由).
(3)在(2)的條件下,若

,求二面角

的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題共10分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是邊長為2的等邊三角形,D為AB邊中點,且CC1=2AB.

(1)(4′)求證:平面C1CD⊥平面ABC;
(2)(6′)求三棱錐D—CBB1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,已知正三棱柱

的底面正三角形的邊長是2,D是

的中點,直線

與側(cè)面

所成的角是

.

⑴求二面角

的大。
⑵求點

到平面

的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面為正文形,PA

平面ABCD,且PA=AD,E為棱PC上的一點,PD

平面ABE
(I)求證:E為PC的中點
(II)若N為CD中點,M為AB上的動點,當(dāng)直線MN與平面ABE所成的角最大時,求二面角C-EM—N的大小

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.

(本小題滿分12分)
如圖,四邊形ABCD為正方形,PD

平面ABCD,PD=AD=2。

(1)求PC與平面PBD所成的角;
(2)在線段PB上是否存在一點E,使得

平面ADE?并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖所示,點
P在正方形
ABCD所在平面外,
PD⊥平面
ABCD,
PD=
AD,則
PA與
BD所成角的度數(shù)為
.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
異面直線是指( )
A.不相交的兩條直線 | B.分別位于兩個平面內(nèi)的直線 |
C.一個平面內(nèi)的直線和不在這個平面內(nèi)的直線 | D.不同在任何一個平面內(nèi)的兩條直線 |
查看答案和解析>>