設(shè)函數(shù),其中
,
為正整數(shù),
、
、
均為常數(shù),曲線
在
處的切線方程為
.
(1)求、
、
的值;
(2)求函數(shù)的最大值;
(3)證明:對任意的都有
.(
為自然對數(shù)的底)
(1),
,
;(2)
;(3)詳見解析.
解析試題分析:(1)利用點(diǎn)在切線
上,求出
的值,由切線方程求出切線的斜率,從而得到
的值,再結(jié)合題干的條件列方程組求出
、
、
的值;(2)利用導(dǎo)數(shù)求出極值,利用極值與最值的關(guān)系求出最大值;(3)證法1是利用分析法將問題
等價(jià)轉(zhuǎn)化為證明不等式
,最后等價(jià)證明
,利用換元法
,構(gòu)造新函數(shù)
,只需證明不等式
即可,利用導(dǎo)數(shù),結(jié)合單調(diào)性進(jìn)行證明;證法2是先構(gòu)造新函數(shù)
,證明
在區(qū)間內(nèi)成立,再令
,得到
,最終得到
,再結(jié)合(2)中的結(jié)論得到
.
試題解析:(1)由點(diǎn)
在直線
上,可得
,即
.
,
.
又切線
的斜率為
,
,
,
,
;
(2)由(1)知,,故
.
令,解得
,即
在
上有唯一零點(diǎn)
.
當(dāng)時(shí),
,故
在
上單調(diào)遞增;
當(dāng)時(shí),
,故
在
單調(diào)遞減.
在
上的最大值
.
(3)證法1:要證對任意的都有
,只需證
,
由(2)知在上
有最大值,
,故只需證
.
即,即
,①
令,則
,①即
,②
令,則
,
顯然當(dāng)時(shí),
,所以
在
上單調(diào)遞增,
,即對任意的
②恒成立,
對任意的
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax+ln x,g(x)=ex.
(1)當(dāng)a≤0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若不等式g(x)< 有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)設(shè),求
的最小值;
(Ⅱ)如何上下平移的圖象,使得
的圖象有公共點(diǎn)且在公共點(diǎn)處切線相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)
.
(Ⅰ)當(dāng)時(shí),求
的最小值;
(Ⅱ)若在區(qū)間
上是單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,且對于任意
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅱ)設(shè)函數(shù),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
是自然對數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間
內(nèi),另一個(gè)在區(qū)間
外,
求的取值范圍;
(3)已知且函數(shù)
在
上是單調(diào)函數(shù),探究函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P()為函數(shù)
圖像上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線OP的斜率
。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),求函數(shù)
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為實(shí)常數(shù),函數(shù)
.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn)
;
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)求證:且
.(注:
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(Ⅰ)若曲線在
與
處的切線相互平行,求
的值及切線斜率;
(Ⅱ)若函數(shù)在區(qū)間
上單調(diào)遞減,求
的取值范圍;
(Ⅲ)設(shè)函數(shù)的圖像C1與函數(shù)
的圖像C2交于P、Q兩點(diǎn),過線段PQ的中點(diǎn)作x軸的垂線分別交C1、C2于點(diǎn)M、N,證明:C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不可能平行.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com