已知函數(shù).
(Ⅰ)設(shè),求
的最小值;
(Ⅱ)如何上下平移的圖象,使得
的圖象有公共點且在公共點處切線相同.
(Ⅰ) 1;(Ⅱ)的圖象向下平移1個單位后,兩函數(shù)圖象在公共點(1,0)處有相同的切線
解析試題分析:(Ⅰ)先求導(dǎo),再求導(dǎo)數(shù)等于0的根,解導(dǎo)數(shù)大于0、小于0的不等式得函數(shù)的單調(diào)區(qū)間。根據(jù)函數(shù)單調(diào)性求其最值。(Ⅱ)令,
的圖象有公共點即
有解。公共點處切線相同.因為切點為同一點只需斜率相等即可。由導(dǎo)數(shù)的幾何意義可知在切點處的導(dǎo)數(shù)就是在切點處切線的斜率,所以只需兩函數(shù)在切點處導(dǎo)數(shù)相等。解方程組即可求出
。
試題解析:(Ⅰ),則
, 2分
令解得
, 3分
因時,
,當(dāng)
時,
, 5分
所以當(dāng)時,
達到最小,
的最小值為1. 7分
(Ⅱ)設(shè)上下平移的圖象為c個單位的函數(shù)解析式為
.
設(shè)的公共點為
.
依題意有: 10分
解得,
即將的圖象向下平移1個單位后,兩函數(shù)圖象在公共點(1,0)處有相同的切線. 13分
考點:1導(dǎo)數(shù)、導(dǎo)數(shù)的幾何意義;2利用導(dǎo)數(shù)研究函數(shù)性質(zhì)。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=axn(1-x)+b(x>0),n為正整數(shù),a,b為常數(shù).曲線y=f(x)在(1,f(1))處的切線方程為x+y=1.
(1)求a,b的值;
(2)求函數(shù)f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,其中
的函數(shù)圖象在點
處的切線平行于
軸.
(1)確定與
的關(guān)系; (2)若
,試討論函數(shù)
的單調(diào)性;
(3)設(shè)斜率為的直線與函數(shù)
的圖象交于兩點
(
)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)圖象上任意一點的切線
的斜率為
,當(dāng)
的最小值為1時,求此時切線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,
的圖象在點
處的切線平行于直線
,求
的值;
(2)當(dāng)時,
在點
處有極值,
為坐標(biāo)原點,若
三點共線,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為函數(shù)
圖象上一點,O為坐標(biāo)原點,記直線
的斜率
.
(Ⅰ)若函數(shù)在區(qū)間
上存在極值,求實數(shù)m的取值范圍;
(Ⅱ)設(shè),若對任意
恒有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80
,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的
倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,貨車應(yīng)以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中
,
為正整數(shù),
、
、
均為常數(shù),曲線
在
處的切線方程為
.
(1)求、
、
的值;
(2)求函數(shù)的最大值;
(3)證明:對任意的都有
.(
為自然對數(shù)的底)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù),
.
(1)若恒成立,求實數(shù)
的值;
(2)若方程有一根為
,方程
的根為
,是否存在實數(shù)
,使
?若存在,求出所有滿足條件的
值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com