日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】2019年,隨著中國第一款5G手機投入市場,5G技術(shù)已經(jīng)進入高速發(fā)展階段.已知某5G手機生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機萬臺,其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

          1)將利潤表示為產(chǎn)量萬臺的函數(shù);

          2)當產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

          【答案】(1) (2) 當產(chǎn)量為4萬臺時,公司所獲利潤最大,最大利潤為5600萬元.

          【解析】

          1)先求得總成本函數(shù),然后用求得利潤的函數(shù)表達式.

          2)用二次函數(shù)的最值的求法,一次函數(shù)最值的求法,求得當產(chǎn)量為何值時,公司所獲利潤最大,且求得最大利潤.

          1)由題意得.

          因為

          所以

          2)由(1)可得,當時,.

          所以當時,(萬元)

          時,,單調(diào)遞增,

          所以(萬元).

          綜上,當時,(萬元).

          所以當產(chǎn)量為4萬臺時,公司所獲利潤最大,最大利潤為5600萬元.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)

          1)若函數(shù)上為減函數(shù),求實數(shù)的最小值;

          2)若存在,使成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面幾何中,研究三角形內(nèi)任意一點與三邊的關(guān)系時,有真命題:邊長為的正三角形內(nèi)任意一點到各邊的距離之和是定值。類比上述命題,請寫出關(guān)于正四面體內(nèi)任意一點與四個面的關(guān)系的一個真命題,并給出證明。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)記函數(shù)的極值點為,若,且,求證:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】定義在上的函數(shù)滿足,,且當時,,則方程上所有根的和為______________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】運動健康已成為大家越來越關(guān)心的話題,某公司開發(fā)的一個類似計步數(shù)據(jù)庫的公眾號.手機用戶可以通過關(guān)注該公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的PK和點贊.現(xiàn)從張華的好友中隨機選取40人(男、女各20人),記錄他們某一天行走的步數(shù),并將數(shù)據(jù)整理如表:

          步數(shù)

          性別

          02000

          20015000

          50018000

          800110000

          10000

          1

          2

          4

          7

          6

          0

          3

          9

          6

          2

          1)若某人一天行走的步數(shù)超過8000步被評定為“積極型”,否則被評定為“懈怠型”,根據(jù)題意完成下列2×2列聯(lián)表,并據(jù)此判斷能否有90%的把握認為男、女的“評定類型”有差異?

          積極型

          懈怠型

          總計

          總計

          2)在張華的這40位好友中,從該天行走的步數(shù)不超過5000步的人中隨機抽取2人,設(shè)抽取的女性有X人,求X=1時的概率.

          參考公式與數(shù)據(jù):

          PK2k0

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k0

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          K2=,其中n=a+b+c+d

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個個分店的年收入之和.

          (個)

          2

          3

          4

          5

          6

          (百萬元)

          2.5

          3

          4

          4.5

          6

          (1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

          (2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應在區(qū)開設(shè)多少個分店時,才能使區(qū)平均每個店的年利潤最大?

          (參考公式: ,其中

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:

          維修次數(shù)

          8

          9

          10

          11

          12

          頻數(shù)

          10

          20

          30

          30

          10

          x表示1臺機器在三年使用期內(nèi)的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).

          (1)若=10,求yx的函數(shù)解析式;

          (2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

          (3)假設(shè)這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】我國南北朝時期的數(shù)學家張丘建是世界數(shù)學史上解決不定方程的第一人,他在《張丘建算經(jīng)》中給出一個解不定方程的百雞問題,問題如下:雞翁一,值錢五,雞母一,值錢三,雞雛三,值錢一.百錢買百雞,問雞翁母雛各幾何?用代數(shù)方法表述為:設(shè)雞翁、雞母、雞雛的數(shù)量分別為,,,則雞翁、雞母、雞雛的數(shù)量即為方程組的解.其解題過程可用框圖表示如下圖所示,則框圖中正整數(shù)的值為 ______

          查看答案和解析>>

          同步練習冊答案