日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

          (Ⅰ)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;

          (Ⅱ)設(shè)曲線經(jīng)過(guò)伸縮變換得到曲線,若點(diǎn),直線交與, ,求, .

          【答案】(1)的普通方程為

          (2);

          【解析】試題分析:(1)直接消去參數(shù)t得直線l的普通方程,根據(jù)ρ2=x2+y2可得曲線C的直角坐標(biāo)方程;(2)先根據(jù)伸縮變換得到曲線C′的方程,則,即可用韋達(dá)定理可得 的值

          根據(jù)三角函數(shù)的性質(zhì)可求出所求.

          試題解析:(1)的普通方程為, ;

          (2)根據(jù)條件可求出伸縮變換后的方程為,即,直線的參數(shù)方程為參數(shù)),帶入橢圓: 化簡(jiǎn)得, , ,所以,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù).

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓Cx2y2+2x-4y+3=0.

          (1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.

          (2)從圓C外一點(diǎn)P(x1y1)向該圓引一條切線,切點(diǎn)為MO為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在三棱柱ABOABO中,AOB=90°,側(cè)棱OO′⊥OAB,OAOBOO′=2.C為線段OA的中點(diǎn),在線段BB上求一點(diǎn)E,使|EC|最。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù),

          (Ⅰ)當(dāng)時(shí),求函數(shù)的最值;

          (Ⅱ)若函數(shù)有極值點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某顏料公司生產(chǎn)、兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過(guò)噸、噸、噸,如果產(chǎn)品的利潤(rùn)為元/噸, 產(chǎn)品的利潤(rùn)為元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤(rùn)為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).

          (1)求證:EF∥平面CB1D1;
          (2)求證:平面CAA1C1⊥平面CB1D1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在等差數(shù)列{an}中,a1 =-2,a12 =20.

          (1)求數(shù)列{an}的通項(xiàng)an

          (2)若bn=,求數(shù)列{}的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,設(shè)P是圓上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為線段PD上一點(diǎn),且,

          (1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;

          (2)求過(guò)點(diǎn)(3,0)且斜率為的直線被軌跡C所截線段的長(zhǎng)度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案