【題目】在等差數(shù)列{an}中,a1 =-2,a12 =20.
(1)求數(shù)列{an}的通項(xiàng)an ;
(2)若bn=,求數(shù)列{
}的前n項(xiàng)和.
【答案】(1);(2)
.
【解析】試題分析:(1)先求出公差,再利用等差數(shù)列通項(xiàng)公式求解即可;
(2)計(jì)算等差數(shù)列{an}的前n項(xiàng)和a1+a2+…+an=n(n-3),得bn== n-3,令cn=
=3n-3,利用等比數(shù)列求和公式求和即可.
試題解析:
(1)因?yàn)閍n=-2+(n-1)d,所以a12=-2+11d=20,所以d=2,所以.
(2)因?yàn)?/span>,所以a1+a2+…+an=n(n-3),所以bn=
= n-3.
令cn=,則cn=3n-3,顯然數(shù)列{cn}是等比數(shù)列,且c1=3-2,公比q=3,
所以數(shù)列{}的前n項(xiàng)和為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列命題:
①在函數(shù)的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為
;②函數(shù)
的圖象關(guān)于點(diǎn)
對(duì)稱;③“
且
”是“
”的必要不充分條件;④已知命題
:對(duì)任意的
,都有
,則
是:存在
,使得
;⑤在
中,若
,
,則角
等于
或
.其中所有真命題的個(gè)數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換
得到曲線
,若點(diǎn)
,直線
與
交與
,
,求
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了宣傳環(huán)保知識(shí),舉辦了一次“環(huán)保知識(shí)知多少”的問卷調(diào)查活動(dòng)(一人答一份).現(xiàn)從回收的年齡在2060歲的問卷中隨機(jī)抽取了100份, 統(tǒng)計(jì)結(jié)果如下面的圖表所示.
年齡 分組 | 抽取份 數(shù) | 答對(duì)全卷的人數(shù) | 答對(duì)全卷的人數(shù)占本組的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | n | 27 | 0.9 |
[40,50) | 10 | 4 | b |
[50,60] | 20 | a | 0.1 |
(1)分別求出n, a, b, c的值;
(2)從年齡在[40,60]答對(duì)全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在[50,60] 的人中至少有1人被授予“環(huán)保之星”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛130千米(50≤x≤100)(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油(2+ )升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【廣西名校2017屆高三上學(xué)期第一次摸底】如圖,過拋物線上一點(diǎn)
,作兩條直線分別交拋物線于
,
,
當(dāng)與
的斜率存在且傾斜角互補(bǔ)時(shí):
(Ⅰ)求的值;
(Ⅱ)若直線在
軸上的截距
時(shí),求
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過兩點(diǎn)
,
,且圓心
在直線
上.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)直線過點(diǎn)
且與圓
有兩個(gè)不同的交點(diǎn)
,若直線
的斜率
大于0,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com