日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)。

          (Ⅰ)求函數(shù)在區(qū)間上的最大值;

          (Ⅱ)設(shè)在(0,2)內(nèi)恰有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;

          (Ⅲ)設(shè),方程在區(qū)間有解,求實(shí)數(shù)的取值范圍。

          【答案】(Ⅰ);(Ⅱ);(Ⅲ).

          【解析】

          (Ⅰ)由題意可得,二次求導(dǎo)有 ,據(jù)此可得單調(diào)遞增,據(jù)此求解函數(shù)的最大值即可.

          (Ⅱ)由函數(shù)的解析式可得,則二次函數(shù)在(0,2)有兩個(gè)變號(hào)零點(diǎn),求證函數(shù) ,結(jié)合函數(shù)的性質(zhì)確定實(shí)數(shù)m的取值范圍即可.

          (Ⅲ)由題意可得 ,分類討論:(ⅰ)時(shí)不成立;

          (ⅱ)時(shí),,構(gòu)造函數(shù),則,易知上單調(diào)遞減,結(jié)合函數(shù)在端點(diǎn)處的極限值確定實(shí)數(shù)m的取值范圍即可.

          (Ⅰ),由 ,

          可知內(nèi)單調(diào)遞增,,故單調(diào)遞增,

          上的最大值為.

          (Ⅱ) ,

          ,

          由題意知:在(0,2)有兩個(gè)變號(hào)零點(diǎn),

          在(0,2)有兩個(gè)變號(hào)零點(diǎn),

          ,

          ,且時(shí),單調(diào)遞增,時(shí),,單調(diào)遞減,

          ,∴.

          (Ⅲ)∵ ,

          (。時(shí),不成立;

          (ⅱ)時(shí),,

          設(shè),

          ,上為單調(diào)遞減,

          ,

          當(dāng)時(shí), 時(shí),

          ,

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù).

          (1)若,上遞增,求的最大值;

          (2)若,存在,使得對(duì)任意,都有恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若,求的單調(diào)區(qū)間;

          (2)若函數(shù)存在唯一的零點(diǎn),且,則的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某集團(tuán)公司為了加強(qiáng)企業(yè)管理,樹立企業(yè)形象,考慮在公司內(nèi)部對(duì)遲到現(xiàn)象進(jìn)行處罰.現(xiàn)在員工中隨機(jī)抽取200人進(jìn)行調(diào)查,當(dāng)不處罰時(shí),有80人會(huì)遲到,處罰時(shí),得到如下數(shù)據(jù):

          處罰金額(單位:元)

          50

          100

          150

          200

          遲到的人數(shù)

          50

          40

          20

          0

          若用表中數(shù)據(jù)所得頻率代替概率.

          (Ⅰ)當(dāng)處罰金定為100元時(shí),員工遲到的概率會(huì)比不進(jìn)行處罰時(shí)降低多少?

          (Ⅱ)將選取的200人中會(huì)遲到的員工分為,兩類:類員工在罰金不超過100元時(shí)就會(huì)改正行為;類是其他員工.現(xiàn)對(duì)類與類員工按分層抽樣的方法抽取4人依次進(jìn)行深度問卷,則前兩位均為類員工的概率是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),。

          (Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求的值;

          (Ⅱ)若,問函數(shù)有無極值點(diǎn)?若有,請(qǐng)求出極值點(diǎn)的個(gè)數(shù);若沒有,請(qǐng)說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正四棱柱中,,,點(diǎn)E上,且.

          1)求異面直線所成角的正切值:

          2)求證:平面DBE

          3)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱錐的底面為菱形,且,,,相交于點(diǎn).

          1)求證:底面;

          2)求直線與平面所成的角的值;

          3)求平面與平面所成二面角的值.(用反三角函數(shù)表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,左焦點(diǎn)為.

          1)求C的方程;

          2)設(shè)C的右頂點(diǎn)為A,不過C左、右頂點(diǎn)的直線lC相交于M,N兩點(diǎn),且.請(qǐng)問:直線l是否過定點(diǎn)?如果過定點(diǎn),求出該定點(diǎn)的坐標(biāo);如果不過定點(diǎn),請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若,求曲線在點(diǎn)處的切線方程;

          2)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案